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IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters  stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless
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About This Manual

This manual discusses modules and peripherals of the MSP430x1xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections and operational paramenters differ
from device-to-device. The user should consult the device-specific datasheet
for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.
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Glossary

ACLK Auxiliary Clock See Basic Clock Module

ADC Analog-to-Digital Converter

BOR Brown-Out Reset See System Resets, Interrupts, and Operating Modes

BSL Bootstrap Loader See www.ti.com/msp430 for application reports

CPU Central Processing Unit See RISC 16-Bit CPU

DAC Digital-to-Analog Converter

DCO Digitally Controlled Oscillator See Basic Clock Module

dst Destination See RISC 16-Bit CPU

FLL Frequency Locked Loop See FLL+ in MSP430x4xx Family User’s Guide

GIE General Interrupt Enable See System Resets Interrupts and Operating Modes

INT(N/2) Integer portion of N/2

I/O Input/Output See Digital I/O

ISR Interrupt Service Routine

LSB Least-Significant Bit

LSD Least-Significant Digit

LPM Low-Power Mode See System Resets Interrupts and Operating Modes

MAB Memory Address Bus

MCLK Master Clock See Basic Clock Module

MDB Memory Data Bus

MSB Most-Significant Bit

MSD Most-Significant Digit

NMI (Non)-Maskable Interrupt See System Resets Interrupts and Operating Modes

PC Program Counter See RISC 16-Bit CPU

POR Power-On Reset See System Resets Interrupts and Operating Modes

PUC Power-Up Clear See System Resets Interrupts and Operating Modes

RAM Random Access Memory

SCG System Clock Generator See System Resets Interrupts and Operating Modes

SFR Special Function Register

SMCLK Sub-System Master Clock See Basic Clock Module

SP Stack Pointer See RISC 16-Bit CPU

SR Status Register See RISC 16-Bit CPU

src Source See RISC 16-Bit CPU

TOS Top-of-Stack See RISC 16-Bit CPU

WDT Watchdog Timer See Watchdog Timer
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Register Bit  Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key Bit Accessibility

rw Read/write

r Read only

r0 Read as 0

r1 Read as 1

w Write only

w0 Write as 0

w1 Write as 1

(w) No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as 0.

h0 Cleared by hardware

h1 Set by hardware

−0,−1 Condition after PUC

−(0),−(1) Condition after POR



vi



 Contents

vii 

������	

1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1 Architecture 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 Flexible Clock System 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.3 Embedded Emulation 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4 Address Space 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.4.1 Flash/ROM 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.2 RAM 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.3 Peripheral Modules 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.4 Special Function Registers (SFRs) 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.4.5 Memory Organization 1-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2 System Resets, Interrupts, and Operating Modes 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 System Reset and Initialization 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.1.1 Power-On Reset (POR) 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1.2 Brownout Reset (BOR) 2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1.3 Device Initial Conditions After System Reset 2-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2 Interrupts 2-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2.1 (Non)-Maskable Interrupts (NMI) 2-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2.2 Maskable Interrupts 2-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2.3 Interrupt Processing 2-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2.4 Interrupt Vectors 2-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3 Operating Modes 2-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.1 Entering and Exiting Low-Power Modes 2-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.4 Principles for Low-Power Applications 2-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.5 Connection of Unused Pins 2-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

viii

3 RISC 16-Bit CPU 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1 CPU Introduction 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2 CPU Registers 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2.1 Program Counter (PC) 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.2 Stack Pointer (SP) 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.3 Status Register (SR) 3-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.4 Constant Generator Registers CG1 and CG2 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.5 General−Purpose Registers R4 - R15 3-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 Addressing Modes 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.1 Register Mode 3-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.2 Indexed Mode 3-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.3 Symbolic Mode 3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.4 Absolute Mode 3-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.5 Indirect Register Mode 3-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.6 Indirect Autoincrement Mode 3-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3.7 Immediate Mode 3-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.4 Instruction Set 3-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.1 Double-Operand (Format I) Instructions 3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.2 Single-Operand (Format II) Instructions 3-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.3 Jumps 3-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.4 Instruction Cycles and Lengths 3-72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.4.5 Instruction Set Description 3-74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Basic Clock Module 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1 Basic Clock Module Introduction 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2 Basic Clock Module Operation 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2.1 Basic Clock Module Features for Low-Power Applications 4-4. . . . . . . . . . . . . . . . 
4.2.2 LFXT1 Oscillator 4-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.3 XT2 Oscillator 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.4 Digitally-Controlled Oscillator (DCO) 4-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.5 DCO Modulator 4-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.6 Basic Clock Module Fail-Safe Operation 4-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2.7 Synchronization of Clock Signals 4-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.3 Basic Clock Module Registers 4-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5  Flash Memory Controller 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1 Flash Memory Introduction 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2 Flash Memory Segmentation 5-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3 Flash Memory Operation 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.3.1 Flash Memory Timing Generator 5-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.2 Erasing Flash Memory 5-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.3 Writing Flash Memory 5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.4 Flash Memory Access During Write or Erase 5-14. . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.5 Stopping a Write or Erase Cycle 5-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.6 Configuring and Accessing the Flash Memory Controller 5-15. . . . . . . . . . . . . . . . . 
5.3.7 Flash Memory Controller Interrupts 5-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.3.8 Programming Flash Memory Devices 5-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5.4 Flash Memory Registers 5-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Contents

ix 

6 Supply Voltage Supervisor 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1 SVS Introduction 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2 SVS Operation 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.2.1 Configuring the SVS 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.2 SVS Comparator Operation 6-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.3 Changing the VLDx Bits 6-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2.4 SVS Operating Range 6-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6.3 SVS Registers 6-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7 Hardware Multiplier 7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.1 Hardware Multiplier Introduction 7-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2 Hardware Multiplier Operation 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.2.1 Operand Registers 7-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.2 Result Registers 7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.3 Software Examples 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.4 Indirect Addressing of RESLO 7-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.2.5 Using Interrupts 7-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.3 Hardware Multiplier Registers 7-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8 DMA Controller 8-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.1 DMA Introduction 8-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2 DMA Operation 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.2.1 DMA Addressing Modes 8-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.2 DMA Transfer Modes 8-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.3 Initiating DMA Transfers 8-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.4 Stopping DMA Transfers 8-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.5 DMA Channel Priorities 8-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.6 DMA Transfer Cycle Time 8-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.7 Using DMA with System Interrupts 8-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.8 DMA Controller Interrupts 8-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.9 Using the I2C Module with the DMA Controller 8-17. . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.10 Using ADC12 with the DMA Controller 8-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8.2.11 Using DAC12 With the DMA Controller 8-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8.3 DMA Registers 8-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9 Digital I/O 9-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.1 Digital I/O Introduction 9-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.2 Digital I/O Operation 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.2.1 Input Register PnIN 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.2.2 Output Registers PnOUT 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.2.3 Direction Registers PnDIR 9-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.2.4 Function Select Registers PnSEL 9-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.2.5 P1 and P2 Interrupts 9-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9.2.6 Configuring Unused Port Pins 9-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.3 Digital I/O Registers 9-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

x

10 Watchdog Timer 10-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.1 Watchdog Timer Introduction 10-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.2 Watchdog Timer Operation 10-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.2.1 Watchdog Timer Counter 10-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.2.2 Watchdog Mode 10-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.2.3 Interval Timer Mode 10-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.2.4 Watchdog Timer Interrupts 10-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.2.5 Operation in Low-Power Modes 10-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
10.2.6 Software Examples 10-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.3 Watchdog Timer Registers 10-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11 Timer_A 11-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11.1 Timer_A Introduction 11-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11.2 Timer_A Operation 11-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.2.1 16-Bit Timer Counter 11-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11.2.2 Starting the Timer 11-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11.2.3 Timer Mode Control 11-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11.2.4 Capture/Compare Blocks 11-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11.2.5 Output Unit 11-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
11.2.6 Timer_A Interrupts 11-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11.3 Timer_A Registers 11-19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12 Timer_B 12-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.1 Timer_B Introduction 12-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.1.1 Similarities and Differences From Timer_A 12-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.2 Timer_B Operation 12-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.2.1 16-Bit Timer Counter 12-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.2.2 Starting the Timer 12-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.2.3 Timer Mode Control 12-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.2.4 Capture/Compare Blocks 12-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.2.5 Output Unit 12-14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
12.2.6 Timer_B Interrupts 12-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

12.3 Timer_B Registers 12-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13 USART Peripheral Interface, UART Mode 13-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.1 USART Introduction: UART Mode 13-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.2 USART Operation: UART Mode 13-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.2.1 USART Initialization and Reset 13-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.2.2 Character Format 13-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.2.3 Asynchronous Communication Formats 13-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.2.4 USART Receive Enable 13-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.2.5 USART Transmit Enable 13-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.2.6 UART Baud Rate Generation 13-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
13.2.7 USART Interrupts 13-17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

13.3 USART Registers: UART Mode 13-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



 Contents

xi 

14 USART Peripheral Interface, SPI Mode 14-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
14.1 USART Introduction: SPI Mode 14-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
14.2 USART Operation: SPI Mode 14-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.2.1 USART Initialization and Reset 14-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
14.2.2 Master Mode 14-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
14.2.3 Slave Mode 14-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
14.2.4 SPI Enable 14-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
14.2.5 Serial Clock Control 14-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
14.2.6 SPI Interrupts 14-11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14.3 USART Registers: SPI Mode 14-13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

15 USART Peripheral Interface, I 2C Mode 15-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.1 I2C Module Introduction 15-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.2 I2C Module Operation 15-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

15.2.1 I2C Module Initialization 15-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.2.2 I2C Serial Data 15-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.2.3 I2C Addressing Modes 15-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.2.4 I2C Module Operating Modes 15-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.2.5 The I2C Data Register I2CDR 15-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.2.6 I2C Clock Generation and Synchronization 15-16. . . . . . . . . . . . . . . . . . . . . . . . . . . 
15.2.7 Using the I2C Module with Low Power Modes 15-17. . . . . . . . . . . . . . . . . . . . . . . . . 
15.2.8 I2C Interrupts 15-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

15.3 I2C Module Registers 15-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

16 Comparator_A 16-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.1 Comparator_A Introduction 16-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.2 Comparator_A Operation 16-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

16.2.1 Comparator 16-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.2.2 Input Analog Switches 16-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.2.3 Output Filter 16-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.2.4 Voltage Reference Generator 16-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.2.5 Comparator_A, Port Disable Register CAPD 16-6. . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.2.6 Comparator_A Interrupts 16-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
16.2.7 Comparator_A Used to Measure Resistive Elements 16-7. . . . . . . . . . . . . . . . . . . . 

16.3 Comparator_A Registers 16-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

17 ADC12 17-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.1 ADC12 Introduction 17-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2 ADC12 Operation 17-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

17.2.1 12-Bit ADC Core 17-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.2 ADC12 Inputs and Multiplexer 17-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.3 Voltage Reference Generator 17-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.4 Auto Power-Down 17-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.5 Sample and Conversion Timing 17-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.6 Conversion Memory 17-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.7 ADC12 Conversion Modes 17-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.8 Using the Integrated Temperature Sensor 17-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.9 ADC12 Grounding and Noise Considerations 17-17. . . . . . . . . . . . . . . . . . . . . . . . . 
17.2.10 ADC12 Interrupts 17-18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

17.3 ADC12 Registers 17-20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Contents

xii

18 ADC10 18-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.1 ADC10 Introduction 18-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2 ADC10 Operation 18-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

18.2.1 10-Bit ADC Core 18-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.2 ADC10 Inputs and Multiplexer 18-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.3 Voltage Reference Generator 18-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.4 Auto Power-Down 18-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.5 Sample and Conversion Timing 18-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.6 Conversion Modes 18-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.7 ADC10 Data Transfer Controller 18-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.8 Using the Integrated Temperature Sensor 18-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.9 ADC10 Grounding and Noise Considerations 18-22. . . . . . . . . . . . . . . . . . . . . . . . . 
18.2.10 ADC10 Interrupts 18-23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

18.3 ADC10 Registers 18-24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

19 DAC12 19-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.1 DAC12 Introduction 19-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.2 DAC12 Operation 19-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

19.2.1 DAC12 Core 19-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.2.2 DAC12 Reference 19-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.2.3 Updating the DAC12 Voltage Output 19-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.2.4 DAC12_xDAT Data Format 19-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.2.5 DAC12 Output Amplifier Offset Calibration 19-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.2.6 Grouping Multiple DAC12 Modules 19-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
19.2.7 DAC12 Interrupts 19-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

19.3 DAC12 Registers 19-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



1-1Introduction

 

������������

This chapter describes the architecture of the MSP430.

Topic Page

1.1 Architecture 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.2 Flexible Clock System 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.3 Embedded Emulation 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.4 Address Space 1-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 1



Architecture

1-2 Introduction

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von-Neumann common memory address
bus (MAB) and memory data bus (MDB). Partnering a modern CPU with
modular memory-mapped analog and digital peripherals, the MSP430 offers
solutions for demanding mixed-signal applications.

Key features of the MSP430x1xx family include:

� Ultralow-power architecture extends battery life

� 0.1-µA RAM retention

� 0.8-µA real-time clock mode

� 250-µA / MIPS active

� High-performance analog ideal for precision measurement

� 12-bit or 10-bit ADC — 200 ksps, temperature sensor, VRef

� 12-bit dual-DAC

� Comparator-gated timers for measuring resistive elements

� Supply voltage supervisor

� 16-bit RISC CPU enables new applications at a fraction of the code size.

� Large register file eliminates working file bottleneck

� Compact core design reduces power consumption and cost

� Optimized for modern high-level programming

� Only 27 core instructions and seven addressing modes

� Extensive vectored-interrupt capability

� In-system programmable Flash permits flexible code changes, field
upgrades and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 6 µs.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

� Low-frequency auxiliary clock = Ultralow-power stand-by mode

� High-speed master clock = High performance signal processing
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Figure 1−1. MSP430 Architecture
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1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

� Unobtrusive development and debug with full-speed execution,
breakpoints, and single-steps in an application are supported.

� Development is in-system subject to the same characteristics as the final
application.

� Mixed-signal integrity is preserved and not subject to cabling interference.
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1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1−2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is 64 KB with future expansion planned.

Figure 1−2. Memory Map
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1.4.1 Flash/ROM

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is 0FFFFh.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (0FFFEh).

1.4.2 RAM

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.
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1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to 0FFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space, and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1−3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Figure 1−3. Bits, Bytes, and Words in a Byte-Organized Memory
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This chapter describes the MSP430x1xx system resets, interrupts, and
operating modes.
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2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2−1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2−1. Power-On Reset and Power-Up Clear Schematic
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A POR is a device reset. A POR is only generated by the following three
events:

� Powering up the device

� A low signal on the RST/NMI pin when configured in the reset mode

� An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

� A POR signal

� Watchdog timer expiration when in watchdog mode only

� Watchdog timer security key violation

� A Flash memory security key violation
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2.1.1 Power-On Reset (POR)

When the VCC rise time is slow, the POR detector holds the POR signal active
until VCC has risen above the VPOR level, as shown in Figure 2−2. When the
VCC supply provides a fast rise time the POR delay, t(POR_DELAY), provides
active time on the POR signal to allow the MSP430 to initialize.

If power to the MSP430 is cycled, the supply voltage VCC must fall below Vmin
to ensure that another POR signal occurs when VCC is powered up again. If
VCC does not fall below Vmin during a cycle or a glitch, a POR is not generated
and power-up conditions do not set correctly. See device-specific datasheet
for parameters.

Figure 2−2. POR Timing
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2.1.2 Brownout Reset (BOR)

Some devices have a brownout reset circuit (see device-specific datasheet)
that replaces the POR detect and POR delay circuits. The brownout reset
circuit detects low supply voltages such as when a supply voltage is applied
to or removed from the VCC terminal. The brownout reset circuit resets the
device by triggering a POR signal when power is applied or removed. The
operating levels are shown in Figure 2−3.

The POR signal becomes active when VCC crosses the VCC(start) level. It
remains active until VCC crosses the V(B_IT+) threshold and the delay t(BOR)
elapses. The delay t(BOR) is adaptive being longer for a slow ramping VCC. The
hysteresis Vhys(B_ IT−) ensures that the supply voltage must drop below
V(B_IT−) to generate another POR signal from the brownout reset circuitry.

Figure 2−3. Brownout Timing
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As the V(B_IT−) level is significantly above the Vmin level of the POR circuit, the
BOR provides a reset for power failures where VCC does not fall below Vmin.
See device-specific datasheet for parameters.
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2.1.3 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

� The RST/NMI pin is configured in the reset mode.

� I/O pins are switched to input mode as described in the Digital I/O chapter.

� Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

� Status register (SR) is reset.

� The watchdog timer powers up active in watchdog mode.

� Program counter (PC) is loaded with address contained at reset vector
location (0FFFEh). CPU execution begins at that address.

Software Initialization

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

� Initialize the SP, typically to the top of RAM.

� Initialize the watchdog to the requirements of the application.

� Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.
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2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown in Figure 2−4. The nearer a module
is to the CPU/NMIRS, the higher the priority. Interrupt priorities determine what
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

� System reset
� (Non)-maskable NMI
� Maskable

Figure 2−4. Interrupt Priority
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2.2.1 (Non)-Maskable Interrupts (NMI)

(Non)-maskable NMI interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (NMIIE, ACCVIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, 0FFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2−5.

A (non)-maskable NMI interrupt can be generated by three sources:

� An edge on the RST/NMI pin when configured in NMI mode

� An oscillator fault occurs

� An access violation to the flash memory

Reset/NMI Pin

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, 0FFFEh.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST /NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.
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Figure 2−5. Block Diagram of (Non)-Maskable Interrupt Sources
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Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.
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Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically
resets the NMIIE, OFIE and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2−6.

Figure 2−6. NMI Interrupt Handler
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Example 1:

Example 2:
BIS #(NMIIE+OFIE+ACCVIE), &IE1

BIS Mask,&IE1 ; Mask enables only
; interrupt sources

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

The ACCVIE, NMIIE, and OFIE enable bits should not be set inside of an NMI
interrupt service routine, unless they are set by the last instruction of the
routine before the RETI instruction. Otherwise, nested NMI interrupts may
occur, causing stack overflow and unpredictable operation.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).
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Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only
the individual enable bit must be set for (non)-maskable interrupts to be
requested.

Interrupt Acceptance

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt
request, and lasting until the start of execution of the first instruction of the
interrupt-service routine, as shown in Figure 2−7. The interrupt logic executes
the following:

1) Any currently executing instruction is completed.

2) The PC, which points to the next instruction, is pushed onto the stack.

3) The SR is pushed onto the stack.

4) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

5) The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

6) The SR is cleared with the exception of SCG0, which is left unchanged.
This terminates any low-power mode. Because the GIE bit is cleared,
further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2−7. Interrupt Processing
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Return From Interrupt

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions
and is illustrated in Figure 2−8.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

Figure 2−8. Return From Interrupt
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Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.
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2.2.4 Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the
address range 0FFFFh − 0FFE0h as described in Table 2−1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt
service routine. See the device-specific data sheet for the complete interrupt
vector list.

Table 2−1. Interrupt Sources,Flags, and Vectors

INTERRUPT SOURCE
INTERRUPT

FLAG
SYSTEM

INTERRUPT
WORD

ADDRESS PRIORITY

Power-up, external
reset, watchdog,
flash password

WDTIFG
KEYV

Reset 0FFFEh 15, highest

NMI, oscillator fault,
flash memory access
violation

NMIIFG 
OFIFG 
ACCVIFG

(non)-maskable
(non)-maskable
(non)-maskable

0FFFCh 14

device-specific 0FFFAh 13

device-specific 0FFF8h 12

device-specific 0FFF6h 11

Watchdog timer WDTIFG maskable 0FFF4h 10

device-specific 0FFF2h 9

device-specific 0FFF0h 8

device-specific 0FFEEh 7

device-specific 0FFECh 6

device-specific 0FFEAh 5

device-specific 0FFE8h 4

device-specific 0FFE6h 3

device-specific 0FFE4h 2

device-specific 0FFE2h 1

device-specific 0FFE0h 0, lowest

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.
See the device-specific datasheet for the SFR configuration.
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2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2−10.

The operating modes take into account three different needs:

� Ultralow-power

� Speed and data throughput

� Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2−9.

Figure 2−9. Typical Current Consumption of 13x and 14x Devices vs Operating Modes
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The low-power modes 0−4 are configured with the CPUOFF, OSCOFF, SCG0,
and SCG1 bits in the status register The advantage of including the CPUOFF,
OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the
present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR
value is not altered during the interrupt service routine. Program flow can be
returned to a different operating mode by manipulating the saved SR value on
the stack inside of the interrupt service routine. The mode-control bits and the
stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.
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Figure 2−10. MSP430x1xx Operating Modes For Basic Clock System
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2.3.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power
operating modes. The program flow is:

� Enter interrupt service routine:

� The PC and SR are stored on the stack

� The CPUOFF, SCG1, and OSCOFF bits are automatically reset

� Options for returning from the interrupt service routine:

� The original SR is popped from the stack, restoring the previous
operating mode.

� The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

; Enter LPM0 Example
BIS #GIE+CPUOFF,SR ; Enter LPM0

; ... ; Program stops here
;
; Exit LPM0 Interrupt Service Routine

BIC #CPUOFF,0(SP) ; Exit LPM0 on RETI
RETI

; Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0,SR ; Enter LPM3

; ... ; Program stops here
;
; Exit LPM3 Interrupt Service Routine

BIC #CPUOFF+SCG1+SCG0,0(SP) ; Exit LPM3 on RETI
RETI

Extended Time in Low-Power Modes

The negative temperature coefficient of the DCO should be considered when
the DCO is disabled for extended low-power mode periods. If the temperature
changes significantly, the DCO frequency at wake-up may be significantly
different from when the low-power mode was entered and may be out of the
specified operating range. To avoid this, the DCO can be set to it lowest value
before entering the low-power mode for extended periods of time where
temperature can change.

; Enter LPM4 Example with lowest DCO Setting
BIC #RSEL2+RSEL1+RSEL0,&BCSCTL1 ; Lowest RSEL
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4

; ... ; Program stops
;
; Interrupt Service Routine

BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SR); Exit LPM4 on RETI
RETI
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2.4 Principles for Low -Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430’s clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 µA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU
is clocked from the DCO (normally off) which has a 6-µs wake-up.

� Use interrupts to wake the processor and control program flow.

� Peripherals should be switched on only when needed.

� Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

� Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

� Avoid frequent subroutine and function calls due to overhead.

� For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2−2.

Table 2−2.Connection of Unused Pins

Pin Potential Comment

AVCC DVCC

AVSS DVSS

VREF+ Open

VeREF+ DVSS

VREF−/VeREF− DVSS

XIN DVCC

XOUT Open

XT2IN DVSS 13x, 14x, 15x and 16x devices

XT2OUT Open 13x, 14x, 15x and 16x devices

Px.0 to Px.7 Open Switched to port function, output direction

RST/NMI DVCC or VCC Pullup resistor 47 kΩ
Test/VPP DVSS P11x devices

Test DVSS Pulldown resistor 30K 11x1 devices

Open 11x1A, 11x2, 12x, 12x2  devices

TDO Open

TDI Open

TMS Open

TCK Open
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3.1 CPU Introduction 

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

� RISC architecture with 27 instructions and 7 addressing modes.

� Orthogonal architecture with every instruction usable with every
addressing mode.

� Full register access including program counter, status registers, and stack
pointer.

� Single-cycle register operations.

� Large 16-bit register file reduces fetches to memory.

� 16-bit address bus allows direct access and branching throughout entire
memory range.

� 16-bit data bus allows direct manipulation of word-wide arguments.

� Constant generator provides six most used immediate values and
reduces code size.

� Direct memory-to-memory transfers without intermediate register holding.

� Word and byte addressing and instruction formats.

The block diagram of the CPU is shown in Figure 3−1.
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Figure 3−1. CPU Block Diagram

015

MDB − Memory Data Bus Memory Address Bus − MAB

16
Zero, Z
Carry, C
Overflow, V
Negative, N

16−bit ALU

dst src

R8        General Purpose

R9        General Purpose

R10      General Purpose

R11      General Purpose

R12      General Purpose

R13      General Purpose

R14      General Purpose

R15      General Purpose

R4        General Purpose

R5        General Purpose

R6        General Purpose

R7        General Purpose

R3/CG2 Constant Generator

R2/SR/CG1 Status

R1/SP  Stack Pointer

R0/PC  Program Counter 0

0

16

MCLK
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3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. R0, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3−2 shows the program counter.

Figure 3−2. Program Counter

0

15 0

Program Counter Bits 15 to 1

1

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL,PC ; Branch to address LABEL

MOV LABEL,PC ; Branch to address contained in LABEL

MOV @R14,PC ; Branch indirect to address in R14



CPU Registers

3-5RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3−3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3−4 shows stack usage.

Figure 3−3. Stack Pointer

0

15 0

Stack Pointer Bits 15 to 1

1

MOV 2(SP),R6 ; Item I2 −> R6

MOV R7,0(SP) ; Overwrite TOS with R7

PUSH #0123h ; Put 0123h onto TOS

POP R8 ; R8 = 0123h

Figure 3−4. Stack Usage

I3

I1

I2

I3

0xxxh

0xxxh − 2

0xxxh − 4

0xxxh − 6

0xxxh − 8

I1

I2

SP

0123h SP

I1

I2

I3 SP

PUSH #0123h POP R8Address

0123h

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3−5.

Figure 3−5. PUSH SP - POP SP Sequence

SP1

SPold

SP1

PUSH SP

The stack pointer is changed after
a PUSH SP instruction.

SP1SP2

POP SP

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)
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3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The remain-
ing combinations of addressing modes are used to support the constant gen-
erator. Figure 3−6 shows the SR bits.

Figure 3−6. Status Register Bits

SCG0 GIE Z C

rw-0

15 0

Reserved N
CPU
OFF

OSC
OFFSCG1V

8 79

Table 3−1 describes the status register bits.

Table 3−1.Description of Status Register Bits

Bit Description

V Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

ADD(.B),ADDC(.B) Set when:
Positive + Positive = Negative
Negative +  Negative = Positive,
otherwise reset

SUB(.B),SUBC(.B),CMP(.B) Set when:
Positive − Negative = Negative
Negative − Positive = Positive,
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the SMCLK.

SCG0 System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of a byte or word operation
is negative and cleared when the result is not negative.
Word operation: N is set to the value of bit 15 of the

result

Byte operation: N is set to the value of bit 7 of the
result

Z Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

C Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.
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3.2.4 Constant Generator Registers CG1 and CG2

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3−2.

Table 3−2.Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 − − − − − Register mode

R2 01 (0) Absolute address mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh −1, word processing

The constant generator advantages are:

� No special instructions required

� No additional code word for the six constants

� No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator − Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC dst

is replaced by:

ADD 0(R3),dst
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3.2.5 General−Purpose Registers R4 - R15

The twelve registers, R4−R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values and
can be accessed with byte or word instructions as shown in Figure 3−7.

Figure 3−7. Register-Byte/Byte-Register Operations

Unused

High Byte Low Byte

Byte

Register-Byte Operation

0h

High Byte Low Byte

Byte

Byte-Register Operation

Register

Memory Register

Memory

Example Register-Byte Operation Example Byte-Register Operation

R5 = 0A28Fh R5 = 01202h

R6 = 0203h R6 = 0223h

Mem(0203h) = 012h Mem(0223h) = 05Fh

ADD.B R5,0(R6) ADD.B      @R6,R5

08Fh 05Fh

+ 012h + 002h

   0A1h 00061h

Mem (0203h) = 0A1h R5 = 00061h

C = 0, Z = 0, N = 1 C = 0, Z = 0, N = 0

(Low byte of register) (Addressed byte)

 + (Addressed byte) + (Low byte of register)

−>(Addressed byte) −>(Low byte of register, zero to High byte)
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3.3 Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3−3 describe the contents of the As
(source) and Ad (destination) mode bits.

Table 3−3.Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/− Indirect register
mode

@Rn Rn is used as a pointer to the
operand.

11/− Indirect
autoincrement

@Rn+ Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/− Immediate mode #N The word following the instruction
contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.
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3.3.1 Register Mode

The register mode is described in Table 3−4.

Table 3−4.Register Mode Description

Assembler Code Content of ROM

MOV  R10,R11 MOV  R10,R11

Length: One or two words

Operation: Move the content of R10 to R11. R10 is not affected.

Comment: Valid for source and destination

Example: MOV  R10,R11

0A023hR10

R11

Before: After:

PC

0FA15h

PCold

0A023hR10

R11

PC PCold + 2

0A023h

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.
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3.3.2 Indexed Mode

The indexed mode is described in Table 3−5.

Table 3−5. Indexed Mode Description

Assembler Code Content of ROM

MOV  2(R5),6(R6) MOV  X(R5),Y(R6)

X = 2

Y = 6

Length: Two or three words

Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV  2(R5),6(R6);

00006h

Address
Space

00002h

04596h PC

0FF16h

0FF14h

0FF12h

0xxxxh

05555h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

0108Ch
+0006h
01092h

01080h
+0002h
01082h

Register
Before:

00006h

Address
Space

00002h

04596h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

01094h

01092h

01090h 0xxxxh

0xxxxh

01234h

01084h

01082h

01080h 0xxxxh

01080h

0108Ch

R5

R6

Register
After:

0xxxxh



Addressing Modes

3-12 RISC 16-Bit CPU

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3−6.

Table 3−6.Symbolic Mode Description

Assembler Code Content of ROM

MOV EDE,TONI MOV  X(PC),Y(PC)

X = EDE − PC

Y = TONI − PC

Length: Two or three words

Operation: Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC + Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Comment: Valid for source and destination

Example: MOV  EDE,TONI ;Source address EDE = 0F016h
;Dest. address TONI=01114h

011FEh

Address
Space

0F102h

04090h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

05555h

01116h

01114h

01112h 0xxxxh

0FF14h
+0F102h

0F016h

0FF16h
+011FEh

01114h

Register
Before:

011FEh

Address
Space

0F102h

04090h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh



Addressing Modes

3-13RISC 16-Bit CPU

3.3.4 Absolute Mode

The absolute mode is described in Table 3−7.

Table 3−7.Absolute Mode Description

Assembler Code Content of ROM

MOV  &EDE,&TONI MOV  X(0),Y(0)

X = EDE

Y = TONI

Length: Two or three words

Operation: Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the
next instruction.

Comment: Valid for source and destination

Example: MOV  &EDE,&TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h

01114h

Address
Space

0F016h

04292h PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

01234h

01116h

01114h

01112h 0xxxxh

Register
Before:

01114h

Address
Space

0F016h

04292h

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0A123h

0F018h

0F016h

0F014h 0xxxxh

0xxxxh

0A123h

01116h

01114h

01112h 0xxxxh

Register
After:

0xxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).
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3.3.5 Indirect Register Mode

The indirect register mode is described in Table 3−8.

Table 3−8. Indirect Mode Description

Assembler Code Content of ROM

MOV  @R10,0(R11) MOV  @R10,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd).

Example: MOV.B  @R10,0(R11)

0000h

Address
Space

04AEBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0xxxxh

0xxh

012h

0xxh

0FA33h

002A7h

R10

R11

Register
Before:

0000h

Address
Space

04AEBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxh

05Bh

002A8h

002A7h

002A6h 0xxh

0FA33h

002A7h

R10

R11

Register
After:

0xxxxh0xxxxh

0xxxxh 0xxxxh

0FA34h

0FA32h

0FA30h

002A8h

002A7h

002A6h
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3.3.6 Indirect Autoincrement Mode

The indirect autoincrement mode is described in Table 3−9.

Table 3−9. Indirect Autoincrement Mode Description

Assembler Code Content of ROM

MOV  @R10+,0(R11) MOV  @R10+,0(R11)

Length: One or two words

Operation: Move the contents of the source address (contents of R10) to
the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without
any overhead. This is useful for table processing.

Comment: Valid only for source operand. The substitute for destination
operand is 0(Rd) plus second instruction INCD Rd.

Example: MOV  @R10+,0(R11)

00000h

Address
Space

04ABBh PC

0FF16h

0FF14h

0FF12h

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

01234h

010AAh

010A8h

010A6h 0xxxxh

0FA32h

010A8h

R10

R11

Register
Before:

Address
Space

0xxxxh

05BC1h

0FA34h

0FA32h

0FA30h 0xxxxh

0xxxxh

05BC1h

010AAh

010A8h

010A6h 0xxxxh

0FA34hR10

R11

Register
After:

0xxxxh

0xxxxh

0FF18h
00000h

04ABBh

PC

0FF16h

0FF14h

0FF12h

0xxxxh

0xxxxh

0FF18h

010A8h

The autoincrementing of the register contents occurs after the operand is
fetched. This is shown in Figure 3−8.

Figure 3−8. Operand Fetch Operation

Instruction Address Operand

+1/ +2
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3.3.7 Immediate Mode

The immediate mode is described in Table 3−10.

Table 3−10.Immediate Mode Description

Assembler Code Content of ROM

MOV  #45h,TONI MOV @PC+,X(PC)

45

X = TONI − PC

Length: Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Operation: Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Comment: Valid only for a source operand.

Example: MOV  #45h,TONI

01192h

Address
Space

00045h

040B0h PC

0FF16h

0FF14h

0FF12h

0xxxxh

01234h

0xxxxh

0FF16h
+01192h
010A8h

Register
Before:

01192h

Address
Space

00045h

040B0h

PC

0FF16h

0FF14h

0FF12h

0xxxxh010AAh

010A8h

010A6h 0xxxxh

Register
After:

0xxxxh0FF18h

010AAh

010A8h

010A6h

00045h
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3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:

� Dual-operand

� Single-operand

� Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:
0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.
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3.4.1 Double-Operand (Format I) Instructions

Figure 3−9 illustrates the double-operand instruction format.

Figure 3−9. Double Operand Instruction Format

B/W D-Reg

15 0

Op-code AdS-Reg

8 714 13 12 11 10 9 6 5 4 3 2 1

As

Table 3−11 lists and describes the double operand instructions.

Table 3−11. Double Operand Instructions

Mnemonic S-Reg,
D-Reg

Operation Status BitsMnemonic S-Reg,
D-Reg V N Z C

MOV(.B) src,dst src → dst − − − −

ADD(.B) src,dst src + dst → dst * * * *

ADDC(.B) src,dst src + dst + C → dst * * * *

SUB(.B) src,dst dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst dst + .not.src + C → dst * * * *

CMP(.B) src,dst dst − src * * * *

DADD(.B) src,dst src + dst + C → dst (decimally) * * * *

BIT(.B) src,dst src .and. dst 0 * * *

BIC(.B) src,dst .not.src .and. dst → dst − − − −

BIS(.B) src,dst src .or. dst → dst − − − −

XOR(.B) src,dst src .xor. dst → dst * * * *

AND(.B) src,dst src .and. dst → dst 0 * * *

* The status bit is affected

− The status bit is not affected

0 The status bit is cleared

1 The status bit is set

Note: Instructions CMP and SUB

The instructions CMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.
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3.4.2 Single-Operand (Format II) Instructions

Figure 3−10 illustrates the single-operand instruction format.

Figure 3−10. Single Operand Instruction Format

B/W D/S-Reg

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Ad

Table 3−12 lists and describes the single operand instructions.

Table 3−12.Single Operand Instructions

Mnemonic S-Reg, 
D-Reg

Operation Status Bits
D-Reg

V N Z C

RRC(.B) dst C → MSB →.......LSB → C * * * *

RRA(.B) dst MSB → MSB →....LSB → C 0 * * *

PUSH(.B) src SP − 2 → SP, src → @SP − − − −

SWPB dst Swap bytes − − − −

CALL dst SP − 2 → SP, PC+2 → @SP − − − −

dst → PC

RETI TOS → SR, SP + 2 → SP * * * *

TOS → PC,SP + 2 → SP

SXT dst Bit 7 → Bit 8........Bit 15 0 * * *

* The status bit is affected

− The status bit is not affected

0 The status bit is cleared

1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address
information.
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3.4.3 Jumps

Figure 3−11 shows the conditional-jump instruction format.

Figure 3−11. Jump Instruction Format

C 10-Bit PC Offset

15 0

Op-code

8 714 13 12 11 10 9 6 5 4 3 2 1

Table 3−13 lists and describes the jump instructions.

Table 3−13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set

JNE/JNZ Label Jump to label if zero bit is reset

JC Label Jump to label if carry bit is set

JNC Label Jump to label if carry bit is reset

JN Label Jump to label if negative bit is set

JGE Label Jump to label if (N .XOR. V) = 0

JL Label Jump to label if (N .XOR. V) = 1

JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from −511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCnew = PCold + 2 + PCoffset × 2
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ADC[.W] Add carry to destination
ADC.B Add carry to destination

Syntax ADC dst     or    ADC.W    dst
ADC.B dst

Operation dst + C −> dst

Emulation ADDC #0,dst
ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise

Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.
ADD @R13,0(R12) ; Add LSDs
ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.
ADD.B @R13,0(R12) ; Add LSDs
ADC.B 1(R12) ; Add carry to MSD
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ADD[.W] Add source to destination
ADD.B Add source to destination

Syntax ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation src + dst −> dst

Description The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

Example R5 is increased by 10. The  jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) ≥ 246 [0Ah+0F6h]
...... ; No carry
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ADDC[.W] Add source and carry to destination
ADDC.B Add source and carry to destination

Syntax ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation src + dst + C −> dst

Description The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
... ; resulting from the LSDs

Example The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven words
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry
... ; resulting from the LSDs
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AND[.W] Source AND destination
AND.B Source AND destination

Syntax AND src,dst or AND.W src,dst
AND.B src,dst

Operation src .AND. dst −> dst

Description The source operand and the destination operand are logically ANDed. The
result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.

MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
JZ TONI ;
...... ; Result is not zero
;
;
; or
;
;
AND #0AA55h,TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.

AND.B #0A5h,TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;
...... ; Result is not zero
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BIC[.W] Clear bits in destination
BIC.B Clear bits in destination

Syntax BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation .NOT.src .AND. dst −> dst

Description The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six MSBs of the RAM word LEO are cleared.

BIC #0FC00h,LEO ; Clear 6 MSBs in MEM(LEO)

Example The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO
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BIS[.W] Set bits in destination
BIS.B Set bits in destination

Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation src .OR. dst −> dst

Description The source operand and the destination operand are logically ORed. The
result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The six LSBs of the RAM word TOM are set.

BIS #003Fh,TOM; set the six LSBs in RAM location TOM

Example The three MSBs of RAM byte TOM are set.

BIS.B #0E0h,TOM ; set the 3 MSBs in RAM location TOM



 Instruction Set

3-27 RISC 16−Bit CPU

BIT[.W] Test bits in destination
BIT.B Test bits in destination

Syntax BIT src,dst or BIT.W src,dst

Operation src .AND. dst

Description The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

Status Bits N: Set if MSB of result is set, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?
JNZ TOM ; Yes, branch to TOM
... ; No, proceed

Example If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8
JC TOM

Example A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.
;
; Serial communication with LSB is shifted first:

; xxxx xxxx xxxx xxxx
BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry −> MSB of RECBUF

; cxxx    xxxx
...... ; repeat previous two instructions
...... ; 8 times

; cccc    cccc
;  ^  ^
; MSB  LSB

; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry −> LSB of RECBUF

; xxxx xxxc
...... ; repeat previous two instructions
...... ; 8 times

; cccc cccc
; |  LSB
; MSB
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* BR, BRANCH Branch to .......... destination

Syntax BR dst

Operation dst −> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address
space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)
; Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR @R5 ; Branch to the address contained in the word
; pointed to by R5.
; Core instruction MOV @R5,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X
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CALL Subroutine

Syntax CALL dst

Operation dst    −> tmp dst is evaluated and stored
SP − 2 −> SP
PC −> @SP PC updated to TOS
tmp −> PC dst saved to PC

Description A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

CALL #EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP−2 → SP, PC+2 → @SP, @PC+ → PC

CALL EXEC ; Call on the address contained in EXEC
; SP−2 → SP, PC+2 → @SP, X(PC) → PC
; Indirect address

CALL &EXEC ; Call on the address contained in absolute address
; EXEC
; SP−2 → SP, PC+2 → @SP, X(0) → PC
; Indirect address

CALL R5 ; Call on the address contained in R5
; SP−2 → SP, PC+2 → @SP, R5 → PC
; Indirect R5

CALL @R5 ; Call on the address contained in the word
; pointed to by R5
; SP−2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5

CALL @R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
;  The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
;  access to next address in a table pointed to by R5
; SP−2 → SP, PC+2 → @SP, @R5 → PC
; Indirect, indirect R5 with autoincrement

CALL X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP−2 → SP, PC+2 → @SP, X(R5) → PC
; Indirect, indirect R5 + X
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* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst
CLR.B dst

Operation 0 −> dst

Emulation MOV #0,dst
MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 −> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 −> TONI
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* CLRC Clear carry bit

Syntax CLRC

Operation 0 −> C

Emulation BIC #1,SR

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected
Z: Not affected
C: Cleared
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter
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* CLRN Clear negative bit

Syntax CLRN

Operation 0 → N
or
(.NOT.src .AND. dst −> dst)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

Status Bits N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN
CALL SUBR
......
......

SUBR JN SUBRET ; If input is negative: do nothing and return
......
......
......

SUBRET RET
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* CLRZ Clear zero bit

Syntax CLRZ

Operation 0 → Z
or
(.NOT.src .AND. dst −> dst)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

Status Bits N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ
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CMP[.W] Compare source and destination
CMP.B Compare source and destination

Syntax CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation dst + .NOT.src + 1
or
(dst − src)

Description The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

Status Bits N: Set if result is negative, reset if positive (src >= dst)
Z: Set if result is zero, reset otherwise (src = dst)
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R6?
JEQ EQUAL ; YES, JUMP

Example Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

Example The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP
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* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst    or    DADC.W    src,dst
DADC.B dst

Operation dst + C −> dst (decimally)

Emulation DADD #0,dst
DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1
Z: Set if dst is 0, reset otherwise
C: Set if destination increments from 9999 to 0000, reset otherwise

Set if destination increments from 99 to 00, reset otherwise
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry
; next instruction’s start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs
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DADD[.W] Source and carry added decimally to destination
DADD.B Source and carry added decimally to destination

Syntax DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation src + dst + C −> dst (decimally)

Description The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

Status Bits N: Set if the MSB is 1, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if the result is greater than 9999

Set if the result is greater than 99
V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry
DADD R5,R3 ; add LSDs
DADD R6,R4 ; add MSDs with carry
JC OVERFLOW ; If carry occurs go to error handling routine

Example The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; clear carry
DADD.B #1,CNT ; increment decimal counter

or

SETC
DADD.B #0,CNT ; ≡ DADC.B        CNT



 Instruction Set

3-37 RISC 16−Bit CPU

* DEC[.W] Decrement destination
* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst
DEC.B dst

Operation dst − 1 −> dst

Emulation SUB #1,dst
Emulation SUB.B #1,dst

Description The destination operand is decremented by one. The original contents are
lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 1

DEC R10 ; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
;TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE
; to EDE+0FEh
;

MOV #EDE,R6
MOV #255,R10

L$1 MOV.B @R6+,TONI−EDE−1(R6)
DEC R10
JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3−12.

Figure 3−12. Decrement Overlap

EDE

EDE+254

TONI

TONI+254
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* DECD[.W] Double-decrement destination
* DECD.B Double-decrement destination

Syntax DECD dst     or     DECD.W    dst
DECD.B dst

Operation dst − 2 −> dst

Emulation SUB #2,dst
Emulation SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.

DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location 
; starting with TONI
; Tables should not overlap: start of destination address TONI must not be within the
; range EDE to EDE+0FEh
;

MOV #EDE,R6
MOV #510,R10

L$1 MOV @R6+,TONI−EDE−2(R6)
DECD R10
JNZ L$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS
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* DINT Disable (general) interrupts

Syntax DINT

Operation 0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst −> dst)

Emulation BIC #8,SR

Description All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit  in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP
MOV COUNTHI,R5 ; Copy counter
MOV COUNTLO,R6
EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.
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* EINT Enable (general) interrupts

Syntax EINT

Operation 1 → GIE
or
(0008h .OR. SR −> SR  /  .src .OR. dst −> dst)

Emulation BIS #8,SR

Description All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.
;

PUSH.B &P1IN
BIC.B @SP,&P1IFG ; Reset only accepted flags
EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed
BIT #Mask,@SP
JEQ MaskOK ; Flags are present identically to mask: jump
......

MaskOK BIC #Mask,@SP
......
INCD SP ; Housekeeping: inverse to PUSH instruction

; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.
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* INC[.W] Increment destination
* INC.B Increment destination

Syntax INC dst or INC.W dst
INC.B dst

Operation dst + 1 −> dst

Emulation ADD #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise

Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS
JEQ OVFL
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* INCD[.W] Double-increment destination
* INCD.B Double-increment destination

Syntax INCD dst or INCD.W dst
INCD.B dst

Operation dst + 2 −> dst

Emulation ADD #2,dst
Emulation ADD.B #2,dst

Example The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise

Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise

Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise

Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH R5 ; R5 is the result of a calculation, which is stored

; in the system stack
INCD SP ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned
; register

RET

Example The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two
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* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst
INV.B dst

Operation .NOT.dst −> dst

Emulation XOR #0FFFFh,dst
Emulation XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise

Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)

Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).
MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated,MEM(LEO) = 052h
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JC Jump if carry set
JHS Jump if higher or same

Syntax JC label
JHS label

Operation If C = 1: PC + 2 × offset −> PC
If C = 0: execute following instruction

Description The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The P1IN.1 signal is used to define or control the program flow.

BIT #01h,&P1IN ; State of signal −> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

Example R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 ≥ 15
...... ; Continue here if R5 < 15
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JEQ, JZ Jump if equal, jump if zero

Syntax JEQ label, JZ label

Operation If Z = 1:  PC + 2 × offset −> PC
If Z = 0: execute following instruction

Description The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Example Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal
...... ; No, data are not equal, continue here

Example Branch to LABEL if R5 is 0.

TST R5
JZ LABEL
......
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JGE Jump if greater or equal

Syntax JGE label

Operation If (N .XOR. V) = 0 then jump to label: PC + 2 × offset −> PC
If (N .XOR. V) = 1 then execute the following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 ≥ (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 ≥ (R7)
...... ; No, proceed
......
......
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JL Jump if less

Syntax JL label

Operation If (N .XOR. V) = 1 then jump to label: PC + 2 × offset −> PC
If (N .XOR. V) = 0 then execute following instruction

Description The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.

Status Bits Status bits are not affected.

Example When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?,  compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed
......
......
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JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 × offset −> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the
program counter.

Status Bits Status bits are not affected.

Hint : This one-word instruction replaces the BRANCH instruction in the range of
−511 to +512 words relative to the current program counter.
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JN Jump if negative

Syntax JN label

Operation if N = 1: PC + 2 × offset −> PC
if N = 0: execute following instruction

Description The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT − R5 −> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT≥0
......
......
......

L$1 CLR COUNT
......
......
......
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JNC Jump if carry not set
JLO Jump if lower

Syntax JNC label
JLO label

Operation if C = 0: PC + 2 × offset −> PC
if C = 1: execute following instruction

Description The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status Bits Status bits are not affected.

Example The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 −> BUFFER
JNC CONT ; No carry, jump to CONT

ERROR ...... ; Error handler start
......
......
......

CONT ...... ; Continue with normal program flow
......
......

Example Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 ; STATUS < 2
...... ; STATUS ≥ 2, continue here
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JNE Jump if not equal
JNZ Jump if not zero

Syntax JNE label
JNZ label

Operation If Z = 0: PC + 2 × offset −> PC
If Z = 1: execute following instruction

Description The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status Bits Status bits are not affected.

Example Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue
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MOV[.W] Move source to destination
MOV.B Move source to destination

Syntax MOV src,dst      or      MOV.W      src,dst
MOV.B src,dst

Operation src −> dst

Description The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV @R10+,TOM−EDE−2(R10) ; Use pointer in R10 for both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue copying
...... ; Copying completed
......
......

Example The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter

Loop MOV.B @R10+,TOM−EDE−1(R10) ; Use pointer in R10 for
; both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter ≠ 0, continue

; copying
...... ; Copying completed
......
......
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* NOP No operation

Syntax NOP

Operation None

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status Bits Status bits are not affected.

The NOP instruction is mainly used for two purposes:

� To fill one, two, or three memory words
� To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.
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* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst
POP.B dst

Operation @SP   −> temp
SP + 2  −> SP 
temp −> dst

Emulation MOV @SP+,dst      or      MOV.W      @SP+,dst
Emulation MOV.B @SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7
POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

Example The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 = 203h
; Mem(R7) = low byte of system stack
: Example: R7 = 20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.
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PUSH[.W] Push word onto stack
PUSH.B Push byte onto stack

Syntax PUSH src      or      PUSH.W      src
PUSH.B src

Operation SP − 2 → SP
src → @SP

Description The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

Example The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.
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* RET Return from subroutine

Syntax RET

Operation @SP→ PC
SP + 2 → SP

Emulation MOV @SP+,PC

Description The return address pushed onto the stack by a CALL instruction is moved to
the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.
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RETI Return from interrupt

Syntax RETI

Operation TOS → SR
SP + 2 → SP
TOS → PC
SP + 2 → SP

Description The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

Status Bits N: restored from system stack
Z: restored from system stack
C: restored from system stack
V: restored from system stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from system stack.

Example Figure 3−13 illustrates the main program interrupt.

Figure 3−13. Main Program Interrupt
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* RLA[.W] Rotate left arithmetically
* RLA.B  Rotate left arithmetically

Syntax RLA dst or RLA.W dst
RLA.B dst

Operation C <− MSB <− MSB−1 ....  LSB+1 <− LSB <− 0

Emulation ADD dst,dst
ADD.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 3−14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3−14. Destination Operand—Arithmetic Shift Left
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An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is
performed: the result has changed sign.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs:

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is  040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is multiplied by 2.

RLA R7 ; Shift left R7  (× 2)

Example The low byte of R7 is multiplied by 4.

RLA.B R7 ; Shift left low byte of R7  (× 2)
RLA.B R7 ; Shift left low byte of R7  (× 4)

Note: RLA Substitution

The assembler does not recognize the instruction:

   RLA @R5+ nor RLA.B      @R5+.

It must be substituted by:

   ADD @R5+,−2(R5) or ADD.B     @R5+,−1(R5).
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* RLC[.W]  Rotate left through carry
* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst
RLC.B dst

Operation C <− MSB <− MSB−1 ....  LSB+1 <− LSB <− C

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 3−15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3−15. Destination Operand—Carry Left Shift

15 0

7 0

C

Byte

Word

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs

the initial value is 04000h ≤ dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:
the initial value is  040h ≤ dst < 0C0h; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C −> R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information −> Carry
RLC R5 ; Carry=P0in.1 −> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; Mem(LEO) x 2 + C −> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+.

It must be substituted by:

ADDC @R5+,−2(R5).
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RRA[.W] Rotate right arithmetically
RRA.B Rotate right arithmetically

Syntax RRA dst or RRA.W dst
RRA.B dst

Operation MSB −> MSB, MSB −> MSB−1, ...  LSB+1 −> LSB, LSB −> C

Description The destination operand is shifted right one position as shown in Figure 3−16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB−1, and the
LSB+1 is shifted into the LSB.

Figure 3−16. Destination Operand—Arithmetic Right Shift
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Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 −> R5

; The value in R5 is multiplied by 0.75 (0.5 + 0.25).
;

PUSH R5 ; Hold R5 temporarily using stack
RRA R5 ; R5 × 0.5  −>  R5
ADD @SP+,R5 ; R5 × 0.5 + R5 = 1.5 × R5  −> R5
RRA R5 ; (1.5 × R5) × 0.5 = 0.75 × R5  −> R5
......

Example The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 −> R5: operation is on low byte only
; High byte of R5 is reset

PUSH.B R5 ; R5 × 0.5  −>  TOS
RRA.B @SP ; TOS × 0.5 = 0.5 × R5 × 0.5 = 0.25 × R5  −> TOS
ADD.B @SP+,R5 ; R5 × 0.5 + R5 × 0.25 = 0.75 × R5  −> R5
......
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RRC[.W] Rotate right through carry
RRC.B Rotate right through carry

Syntax RRC dst or RRC.W dst
RRC dst

Operation C −> MSB −> MSB−1 ....  LSB+1 −> LSB −> C

Description The destination operand is shifted right one position as shown in Figure 3−17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3−17. Destination Operand—Carry Right Shift
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Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Set if initial destination is positive and initial carry is set, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h −> R5

Example R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h −> R5; low byte of R5 is used
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* SBC[.W] Subtract source and borrow/.NOT. carry from destination
* SBC.B Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst
SBC.B dst

Operation dst + 0FFFFh + C −> dst
dst + 0FFh + C −> dst

Emulation SUBC #0,dst
SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow  Implementation .

The borrow is treated as a .NOT. carry : Borrow Carry bit
   Yes       0
   No       1
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* SETC Set carry bit

Syntax SETC

Operation 1 −> C

Emulation BIS #1,SR

Description The carry bit (C) is set.

Status Bits N: Not affected
Z: Not affected
C: Set
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

DSUB ADD #06666h,R5 ; Move content R5 from 0−9 to 6−0Fh
; R5 = 03987h + 06666h = 09FEDh

INV R5 ; Invert this (result back to 0−9)
; R5 = .NOT. R5 = 06012h

SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h − R5 − 1)
; R6 = R6 + R5 + 1
; R6 = 0150h
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* SETN Set negative bit

Syntax SETN

Operation 1 −> N

Emulation BIS #4,SR

Description The negative bit (N)  is set.

Status Bits N: Set
Z: Not affected
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
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* SETZ Set zero bit

Syntax SETZ

Operation 1 −> Z

Emulation BIS #2,SR

Description The zero bit (Z) is set.

Status Bits N: Not affected
Z: Set
C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
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SUB[.W] Subtract source from destination
SUB.B Subtract source from destination

Syntax SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 −> dst
or
[(dst − src −> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example See example at the SBC instruction.

Example See example at the SBC.B instruction.

Note: Borrow  Is Treated as a .NOT .

The borrow is treated as a .NOT. carry : Borrow Carry bit
  Yes      0
  No      1
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SUBC[.W]SBB[.W] Subtract source and borrow/.NOT. carry from destination
SUBC.B,SBB.B   Subtract source and borrow/.NOT. carry from destination

Syntax SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

Operation dst + .NOT.src + C −> dst
or
(dst − src − 1 + C −> dst)

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive.
Z: Set if result is zero, reset otherwise.
C: Set if there is a carry from the MSB of the result, reset otherwise.

Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, reset otherwise.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUB.W R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ;   8-bit part, MSBs

Example The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
... ; resulting from the LSDs

Note: Borrow  Implementation 

The borrow is treated as a .NOT. carry :  Borrow Carry bit
  Yes      0
  No      1
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SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15 to 8 <−> bits 7 to 0

Description The destination operand high and low bytes are exchanged as shown in 
Figure 3−18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3−18. Destination Operand Byte Swap
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Example

MOV #040BFh,R7 ; 0100000010111111 −> R7
SWPB R7 ; 1011111101000000 in R7

Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;
MOV R5,R4 ;Copy the swapped value to R4
BIC #0FF00h,R5 ;Correct the result
BIC #00FFh,R4 ;Correct the result
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SXT Extend Sign

Syntax SXT dst

Operation Bit 7 −> Bit 8 ......... Bit 15

Description The sign of the low byte is extended into the high byte as shown in Figure 3−19.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (.NOT. Zero)
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3−19. Destination Operand Sign Extension
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Example R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h: . . . .   . . . . 1000 0000
SXT R7 ; R7 = 0FF80h: 1111 1111 1000 0000
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* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst
TST.B dst

Operation dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation CMP #0,dst
CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ...... ; R7 is positive but not zero
R7NEG ...... ; R7 is negative
R7ZERO ...... ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7
JN R7NEG ; Low byte of R7 is negative
JZ R7ZERO ; Low byte of R7 is zero

R7POS ...... ; Low byte of R7 is positive but not zero
R7NEG ..... ; Low byte of R7 is negative
R7ZERO ...... ; Low byte of R7 is zero
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XOR[.W] Exclusive OR of source with destination
XOR.B Exclusive OR of source with destination

Syntax XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation src .XOR. dst −> dst

Description The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

Status Bits N: Set if result MSB is set, reset if not set
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Set if both operands are negative

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6

Example The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Example Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is 0h
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3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3−14 lists the CPU cycles for interrupt overhead and reset.

Table 3−14.Interrupt and Reset Cycles

No. of
Cycles

Length of
Action

No. of
Cycles

Length of
Instruction

Return from interrupt (RETI) 5 1

Interrupt accepted 6 −

WDT reset 4 −

Reset (RST/NMI) 4 −

Format-II (Single Operand) Instruction Cycles and Lengths

Table 3−15 lists the length and CPU cycles for all addressing modes of
format-II instructions.

Table 3−15.Format-II Instruction Cycles and Lengths

No. of Cycles

Addressing
Mode

RRA, RRC
SWPB, SXT PUSH CALL

Length of
Instruction Example

Rn 1 3 4 1 SWPB R5

@Rn 3 4 4 1 RRC @R9

@Rn+ 3 5 5 1 SWPB @R10+

#N (See note) 4 5 2 CALL #0F000h

X(Rn) 4 5 5 2 CALL 2(R7)

EDE 4 5 5 2 PUSH EDE

&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format II Immediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-III (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.
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Format-I (Double Operand) Instruction Cycles and Lengths

Table 3−16 lists the length and CPU cycles for all addressing modes of format-I
instructions.

Table 3−16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of
Cycles

Length of
InstructionSrc Dst

No. of
Cycles

Length of
Instruction Example

Rn Rm 1 1 MOV R5,R8Rn

PC 2 1 BR R9

x(Rm) 4 2 ADD R5,4(R6)

EDE 4 2 XOR R8,EDE

&EDE 4 2 MOV R5,&EDE

@Rn Rm 2 1 AND @R4,R5@Rn

PC 2 1 BR @R8

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R5,EDE

&EDE 5 2 XOR @R5,&EDE

@Rn+ Rm 2 1 ADD @R5+,R6@Rn+

PC 3 1 BR @R9+

x(Rm) 5 2 XOR @R5,8(R6)

EDE 5 2 MOV @R9+,EDE

&EDE 5 2 MOV @R9+,&EDE

#N Rm 2 2 MOV #20,R9#N

PC 3 2 BR #2AEh

x(Rm) 5 3 MOV #0300h,0(SP)

EDE 5 3 ADD #33,EDE

&EDE 5 3 ADD #33,&EDE

x(Rn) Rm 3 2 MOV 2(R5),R7x(Rn)

PC 3 2 BR 2(R6)

TONI 6 3 MOV 4(R7),TONI

x(Rm) 6 3 ADD 4(R4),6(R9)

&TONI 6 3 MOV 2(R4),&TONI

EDE Rm 3 2 AND EDE,R6EDE

PC 3 2 BR EDE

TONI 6 3 CMP EDE,TONI

x(Rm) 6 3 MOV EDE,0(SP)

&TONI 6 3 MOV EDE,&TONI

&EDE Rm 3 2 MOV &EDE,R8&EDE

PC 3 2 BRA &EDE

TONI 6 3 MOV &EDE,TONI

x(Rm) 6 3 MOV &EDE,0(SP)

&TONI 6 3 MOV &EDE,&TONI
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3.4.5 Instruction Set Description

The instruction map is shown in Figure 3−20 and the complete instruction set
is summarized in Table 3−17.

Figure 3−20. Core Instruction Map

0xxx
4xxx
8xxx
Cxxx
1xxx
14xx
18xx
1Cxx
20xx
24xx
28xx
2Cxx
30xx
34xx
38xx
3Cxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

RRC RRC.B SWPB RRA RRA.B SXT PUSH PUSH.B CALL RETI

000 040 080 0C0 100 140 180 1C0 200 240 280 2C0 300 340 380 3C0

JNE/JNZ
JEQ/JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B
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Table 3−17.MSP430 Instruction Set
Mnemonic Description V N Z C

ADC(.B)† dst Add C to destination dst + C → dst * * * *

ADD(.B) src,dst Add source to destination src + dst → dst * * * *

ADDC(.B) src,dst Add source and C to destination src + dst + C → dst * * * *

AND(.B) src,dst AND source and destination src .and. dst  → dst 0 * * *

BIC(.B) src,dst Clear bits in destination .not.src .and. dst → dst − − − −

BIS(.B) src,dst Set bits in destination src .or. dst → dst − − − −

BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *

BR† dst Branch to destination dst → PC − − − −

CALL dst Call destination PC+2 → stack, dst → PC − − − −

CLR(.B)† dst Clear destination 0 → dst − − − −

CLRC† Clear C 0 → C − − − 0

CLRN† Clear N 0 → N − 0 − −

CLRZ† Clear Z 0 → Z − − 0 −

CMP(.B) src,dst Compare source and destination dst − src * * * *

DADC(.B)† dst Add C decimally to destination dst + C → dst (decimally) * * * *

DADD(.B) src,dst Add source and C decimally to dst. src + dst + C → dst (decimally) * * * *

DEC(.B)† dst Decrement destination dst − 1 → dst * * * *

DECD(.B)† dst Double-decrement destination dst − 2 → dst * * * *

DINT† Disable interrupts 0 → GIE − − − −

EINT† Enable interrupts 1 → GIE − − − −

INC(.B)† dst Increment destination  dst +1 → dst * * * *

INCD(.B)† dst Double-increment destination dst+2 → dst * * * *

INV(.B)† dst Invert destination .not.dst → dst * * * *

JC/JHS label Jump if C set/Jump if higher or same − − − −

JEQ/JZ label Jump if equal/Jump if Z set − − − −

JGE label Jump if greater or equal − − − −

JL label Jump if less − − − −

JMP label Jump PC + 2 x offset → PC − − − −

JN label Jump if N set − − − −

JNC/JLO label Jump if C not set/Jump if lower − − − −

JNE/JNZ label Jump if not equal/Jump if Z not set − − − −

MOV(.B) src,dst Move source to destination src → dst − − − −

NOP† No operation − − − −

POP(.B)† dst Pop item from stack to destination @SP → dst, SP+2 → SP − − − −

PUSH(.B) src Push source onto stack SP − 2 → SP, src → @SP − − − −

RET† Return from subroutine @SP → PC, SP + 2 → SP − − − −

RETI Return from interrupt * * * *

RLA(.B)† dst Rotate left arithmetically * * * *

RLC(.B)† dst Rotate left through C * * * *

RRA(.B) dst Rotate right arithmetically 0 * * *

RRC(.B) dst Rotate right through C * * * *

SBC(.B)† dst Subtract not(C) from destination dst + 0FFFFh + C → dst * * * *

SETC† Set C 1 → C − − − 1

SET† Set N 1 → N − 1 − −

SETZ† Set Z 1 → C − − 1 −

SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 → dst * * * *

SUBC(.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C → dst * * * *

SWPB dst Swap bytes − − − −

SXT dst Extend sign 0 * * *

TST(.B)† dst Test destination dst + 0FFFFh + 1 0 * * 1

XOR(.B) src,dst Exclusive OR source and destination src .xor. dst → dst * * * *

† Emulated Instruction
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The basic clock module provides the clocks for MSP430x1xx devices. This
chapter describes the operation of the basic clock module. The basic clock
module is implemented in all MSP430x1xx devices.
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4.1 Basic Clock Module Introduction

The basic clock module supports low system cost and ultralow-power
consumption. Using three internal clock signals, the user can select the best
balance of performance and low power consumption. The basic clock module
can be configured to operate without any external components, with one
external resistor, with one or two external crystals, or with resonators, under
full software control.

The basic clock module includes two or three clock sources:

� LFXT1CLK: Low-frequency/high-frequency oscillator that can be used
either with low-frequency 32768-Hz watch crystals, or standard crystals
or resonators in the 450-kHz to 8-MHz range.

� XT2CLK: Optional high-frequency oscillator that can be used with
standard crystals, resonators, or external clock sources in the 450-kHz to
8-MHz range.

� DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type
characteristics.

Three clock signals are available from the basic clock module:

� ACLK: Auxiliary clock. The ACLK is the buffered LFXT1CLK clock source
divided by 1, 2, 4, or 8. ACLK is software selectable for individual
peripheral modules.

� MCLK: Master clock. MCLK is software selectable as LFXT1CLK,
XT2CLK (if available), or DCOCLK. MCLK is divided by 1, 2, 4, or 8. MCLK
is used by the CPU and system.

� SMCLK: Sub-main clock. SMCLK is software selectable as LFXT1CLK,
XT2CLK (if available on-chip), or DCOCLK. SMCLK is divided by 1, 2, 4,
or 8. SMCLK is software selectable for individual peripheral modules.

The block diagram of the basic clock module is shown in Figure 4−1.
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Figure 4−1. Basic Clock Block Diagram
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Note: XT2 Oscillator

The XT2 Oscillator is not present on MSP430x11xx or MSP430x12xx
devices. The LFXT1CLK is used in place of XT2CLK.
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4.2 Basic Clock Module Operation

After a PUC, MCLK and SMCLK are sourced from DCOCLK at ~800 kHz (see
device-specific datasheet for parameters) and ACLK is sourced from LFXT1
in LF mode.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure
the MSP430 operating modes and enable or disable portions of the basic clock
module. See Chapter System Resets, Interrupts and Operating Modes. The
DCOCTL, BCSCTL1, and BCSCTL2 registers configure the basic clock
module

The basic clock can be configured or reconfigured by software at any time
during program execution, for example:

BIS.B #RSEL2+RSEL1+RSEL0,&BCSCTL1 ;

BIS.B #DCO2+DCO1+DCO0,&DCOCTL ; Set max DCO frequency

4.2.1 Basic Clock Module Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered MSP430x1xx
applications:

� Low clock frequency for energy conservation and time keeping

� High clock frequency for fast reaction to events and fast burst processing
capability

The basic clock module addresses the above conflicting requirements by
allowing the user to select from the three available clock signals: ACLK, MCLK,
and SMCLK. For optimal low-power performance, the ACLK can be
configured to oscillate with a low-power 32,786-Hz watch crystal, providing a
stable time base for the system and low power stand-by operation. The MCLK
can be configured to operate from the on-chip DCO that can be only activated
when requested by interrupt-driven events. The SMCLK can be configured to
operate from a crystal or the DCO, depending on peripheral requirements. A
flexible clock distribution and divider system is provided to fine tune the
individual clock requirements.
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4.2.2 LFXT1 Oscillator

The LFXT1 oscillator supports ultralow-current consumption using a
32,768-Hz watch crystal in LF mode (XTS = 0). A watch crystal connects to XIN
and XOUT without any other external components. Internal 12-pF load
capacitors are provided for LFXT1 in LF mode. The capacitors add serially,
providing a match for standard 32,768-Hz crystals requiring a 6-pF load.
Additional capacitors can be added if necessary.

The LFXT1 oscillator also supports high-speed crystals or resonators when in
HF mode (XTS = 1). The high-speed crystal or resonator connects to XIN and
XOUT and requires external capacitors on both terminals. These capacitors
should be sized according to the crystal or resonator specifications.

LFXT1 may be used with an external clock signal on the XIN pin in either LF
or HF mode. When used with an external signal, the external frequency must
meet the datasheet parameters for the chosen mode.

Software can disable LFXT1 by setting OSCOFF, if this signal does not source
SMCLK or MCLK, as shown in Figure 4−2.

Figure 4−2. Off Signals for the LFXT1 Oscillator

XT2

XTS

OSCOFF
CPUOFF

SELM0
SELM1

SCG1

SELS

XT2 is an Internal Signal
XT2 = 0: MSP430x11xx, MSP430x12xx devices 
XT2 = 1: MSP430x13x, MSP430x14x
               MSP430x15x, and MSP430x16x devices

LFoff

XT1off

Note: LFXT1 Oscillator Characteristics

Low-frequency crystals often require hundreds of milliseconds to start up,
depending on the crystal.

Ultralow-power oscillators such as the LFXT1 in LF mode should be guarded
from noise coupling from other sources. The crystal should be placed as
close as possible to the MSP430 with the crystal housing grounded and the
crystal traces guarded with ground traces.

The LFXT1 oscillator in LF mode requires a 5.1-MΩ resistor from XOUT to
VSS when VCC < 2.5 V.
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4.2.3 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK
and its characteristics are identical to LFXT1 in HF mode. The XT2OFF bit
disables the XT2 oscillator if XT2CLK is not used for MCLK or SMCLK as
shown in Figure 4−3.

XT2 may be used with external clock signals on the XT2IN pin. When used with
an external signal, the external frequency must meet the datasheet
parameters for XT2.

Figure 4−3. Off Signals for Oscillator XT2

XT2OFF
CPUOFF
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4.2.4 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated ring oscillator with RC-type characteristics. As with
any RC-type oscillator, frequency varies with temperature, voltage, and from
device to device. The DCO frequency can be adjusted by software using the
DCOx, MODx, and RSELx bits. The digital control of the oscillator allows
frequency stabilization despite its RC-type characteristics.

Disabling the DCO

Software can disable DCOCLK by setting SCG0 when it is not used to source
SMCLK or MCLK in active mode, as shown in Figure 4−4.

Figure 4−4. On/Off Control of DCO
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DCOCLK_on
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DCO_Gen_on
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0: off
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Adjusting the DCO frequency

After a PUC, the internal resistor is selected for the DC generator, RSELx =
4, and DCOx = 3, allowing the DCO to start at a mid-range frequency. MCLK
and SMCLK are sourced from DCOCLK. Because the CPU executes code
from MCLK, which is sourced from the fast-starting DCO, code execution
begins from PUC in less than 6 µs. The typical DCOx and RSELx ranges and
steps are shown in Figure 4−5.

The frequency of DCOCLK is set by the following functions:

� The current injected into the DC generator by either the internal or external
resistor defines the fundamental frequency. The DCOR bit selects the
internal or external resistor.

� The three RSELx bits select one of eight nominal frequency ranges for the
DCO. These ranges are defined for an individual device in the
device-specific data sheet.

� The three DCOx bits divide the DCO range selected by the RSELx bits into
8 frequency steps, separated by approximately 10%.

� The five MODx bits, switch between the frequency selected by the DCOx
bits and the next higher frequency set by DCOx+1.  When DCOx = 07h,
the MODx bits have no effect because the DCO is already at the highest
setting for the selected RSELx range.

Figure 4−5. Typical DCOx Range and RSELx Steps

RSEL=0

RSEL=1

RSEL=2

RSEL=3

RSEL=4

RSEL=5

RSEL=6

RSEL=7

DCO=0 DCO=7DCO=4DCO=1 DCO=2 DCO=3 DCO=5 DCO=6

fDCO

1000 kHz

10000 kHz

100 kHz



Basic Clock Module Operation

4-8 Basic Clock Module

Using an External Resistor (R OSC) for the DCO

The DCO temperature coefficient can be reduced by using an external resistor
ROSC  tied to DVCC to source the current for the DC generator. Figure 4−6
shows the typical relationship of fDCO vs. temperature for both the internal and
external resistor options. Using an external ROSC reduces the DCO
temperature coefficient to approximately 0.1%/C. See the device-specific data
sheet for parameters.

ROSC also allows the DCO to operate at higher frequencies. For example, the
internal resistor nominal value is approximately 300 kΩ, allowing the DCO to
operate up to approximately 5 MHz. When using an external ROSC of
approximately 100 kΩ the DCO can operate up to approximately 10 MHz. The
user should take care to not exceed the maximum MCLK frequency specified
in the datasheet, even though the DCO is capable of exceeding it.

Figure 4−6. DCO Frequency vs. Temperature
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4.2.5 DCO Modulator

The modulator mixes two DCO frequencies, fDCO and fDCO+1 to produce an
intermediate effective frequency between fDCO and fDCO+1 and spread the
clock energy, reducing electromagnetic interference (EMI). The modulator
mixes fDCO and fDCO+1 for 32 DCOCLK clock cycles and is configured with the
MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:

t =(32− MODx) × tDCO + MODx × tDCO+1

Because fDCO is lower than the effective frequency and fDCO+1 is higher than
the effective frequency, the error of the effective frequency integrates to zero.
It does not accumulate. The error of the effective frequency is zero every 32
DCOCLK cycles. Figure 4−7 illustrates the modulator operation.

The modulator settings and DCO control are configured with software. The
DCOCLK can be compared to a stable frequency of known value and adjusted
with the DCOx, RSELx, and MODx bits. See http://www.msp430.com for
application notes and example code on configuring the DCO.

Figure 4−7. Modulator Patterns
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4.2.6 Basic Clock Module Fail-Safe Operation

The basic clock module incorporates an oscillator-fault detection fail-safe
feature. The oscillator fault detector is an analog circuit that monitors the
LFXT1CLK (in HF mode) and the XT2CLK. An oscillator fault is detected when
either clock signal is not present for approximately 50 µs. When an oscillator
fault is detected, and when MCLK is sourced from either LFXT1 in HF mode
or XT2, MCLK is automatically switched to the DCO for its clock source. This
allows code execution to continue, even though the crystal oscillator has
stopped.

When OFIFG is set and OFIE is set, an NMI interrupt is requested. The NMI
interrupt service routine can test the OFIFG flag to determine if an oscillator
fault occurred. The OFIFG flag must be cleared by software.

Note: No Oscillator Fault Detection for LFXT1 in LF Mode

Oscillator fault detection is only applicable for LFXT1 in HF mode and XT2.
There is no oscillator fault detection for LFXT1 in LF mode.

OFIFG is set by the oscillator fault signal, XT_OscFault. XT_OscFault is set
at POR, when LFXT1 has an oscillator fault in HF mode, or when XT2 has an
oscillator fault. When XT2 or LFXT1 in HF mode is stopped with software the
XT_OscFault signal becomes active immediately, remains active until the
oscillator is re-started, and becomes inactive approximately 50 µs after the
oscillator re-starts as shown in Figure 4−8.

Figure 4−9. Oscillator-Fault Signal
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Oscillator Fault Detection

Signal XT_OscFault triggers the OFIFG flag as shown in Figure 4−10. The
LFXT1_OscFault signal is low when LFXT1 is in LF mode.

On devices without XT2, the OFIFG flag cannot be cleared when LFXT1 is in
LF mode. MCLK may be sourced by LFXT1CLK in LF mode by setting the
SELMx bits, even though OFIFG remains set.

On devices with XT2, the OFIFG flag can be cleared by software when LFXT1
is in LF mode and it remains cleared. MCLK may be sourced by LFXT1CLK
in LF mode regardless of the state of the OFIFG flag.

Figure 4−10. Oscillator-Fault-Interrupt

XT_OscFault

S

Clear

OFIFG

OFIE

PUC IRQA

IE1.1

IFG1.1

XT1off

LFXT1_OscFault

POR

XT2off
XT2_OscFault

XT2

Oscillator Fault Interrupt Request

Fault_from
XT2

Fault_from
XT1

XTS

SELM1

SELM0

DCOR

Oscillator Fault Fail-Safe Logic

XT2 Is an internal signal. XT2 = 0 on devices without XT2 (MSP430x11xx and MSP430x12xx).
XT2 = 1 on devices with XT2 (MSP430F13x, MSP430F14x, MSP430F15x, and(MSP430F16x)
IRQA: Interrupt request accepted
LFXT1_OscFault: Only applicable to LFXT1 oscillator in HF mode.
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Sourcing MCLK from a Crystal

After a PUC, the basic clock module uses DCOCLK for MCLK. If required,
MCLK may be sourced from LFXT1 or XT2.

The sequence to switch the MCLK source from the DCO clock to the crystal
clock (LFXT1CLK or XT2CLK) is:

1) Switch on the crystal oscillator

2) Clear the OFIFG flag

3) Wait at least 50 µs

4) Test OFIFG, and repeat steps 1-4 until OFIFG remains cleared.

; Select LFXT1 (HF mode) for MCLK

BIC #OSCOFF,SR ; Turn on osc.

BIS.B #XTS,BCSCTL1 ; HF mode

L1 BIC.B #OFIFG,&IFG1 ; Clear OFIFG

MOV #0FFh,R15 ; Delay

L2 DEC R15 ;

JNZ L2 ;

BIT.B #OFIFG,&IFG1 ; Re−test OFIFG

JNZ L1 ; Repeat test if needed

BIS.B #SELM1+SELM0,&BCSCTL2 ; Select LFXT1CLK
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4.2.7 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to the another, the
switch is synchronized to avoid critical race conditions as shown in
Figure 4−11:

1) The current clock cycle continues until the next rising edge.

2) The clock remains high until the next rising edge of the new clock.

3) The new clock source is selected and continues with a full high period.

Figure 4−11. Switch MCLK from DCOCLK to LFXT1CLK
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4.3 Basic Clock Module Registers  

The basic clock module registers are listed in Table 4−1:

Table 4−1.Basic Clock Module Registers

Register Short Form Register Type Address Initial State

DCO control register DCOCTL Read/write 056h 060h with PUC

Basic clock system control 1 BCSCTL1 Read/write 057h 084h with PUC

Basic clock system control 2 BCSCTL2 Read/write 058h Reset with POR

SFR interrupt enable register 1 IE1 Read/write 000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 002h Reset with PUC



Basic Clock Module Registers 

4-15Basic Clock Module

DCOCTL, DCO Control Register

7 6 5 4 3 2 1 0

DCOx MODx

rw−0 rw−1 rw−1 rw−0 rw−0 rw−0 rw−0 rw−0

DCOx Bits
7-5

DCO frequency select. These bits select which of the eight discrete DCO
frequencies of the RSELx setting is selected.

MODx Bits
4-0

Modulator selection. These bits define how often the fDCO+1 frequency is
used within a period of 32 DCOCLK cycles. During the remaining clock
cycles (32−MOD) the fDCO frequency is used. Not useable when DCOx=7.

BCSCTL1, Basic Clock System Control Register 1

7 6 5 4 3 2 1 0

XT2OFF XTS DIVAx XT5V RSELx

rw−(1) rw−(0) rw−(0) rw−(0) rw−0 rw−1 rw−0 rw−0

XT2OFF Bit 7 XT2 off. This bit turns off the XT2 oscillator
0 XT2 is on
1 XT2 is off if it is not used for MCLK or SMCLK.

XTS Bit 6 LFXT1 mode select.
0 Low frequency mode
1 High frequency mode

DIVAx Bits
5-4

Divider for ACLK
00 /1
01 /2
10 /4
11 /8

XT5V Bit 3 Unused. XT5V should always be reset.

RSELx Bits
2-0

Resistor Select. The internal resistor is selected in eight different steps.
The value of the resistor defines the nominal frequency. The lowest
nominal frequency is selected by setting RSELx=0.
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BCSCTL2, Basic Clock System Control Register 2

7 6 5 4 3 2 1 0

SELMx DIVMx SELS DIVSx DCOR

rw−(0) rw−(0) rw−(0) rw−(0) rw−0 rw−0 rw−0 rw−0

SELMx Bits
7-6

Select MCLK. These bits select the MCLK source.
00 DCOCLK
01 DCOCLK
10 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK when XT2

oscillator not present on-chip.
11 LFXT1CLK

DIVMx BitS
5-4

Divider for MCLK
00 /1
01 /2
10 /4
11 /8

SELS Bit 3 Select SMCLK. This bit selects the SMCLK source.
0 DCOCLK
1 XT2CLK when XT2 oscillator present on-chip. LFXT1CLK when XT2

oscillator not present on-chip.

DIVSx BitS
2-1

Divider for SMCLK
00 /1
01 /2
10 /4
11 /8

DCOR Bit 0 DCO resistor select
0 Internal resistor
1 External resistor
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IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

OFIE

rw−0

Bits
7-2

These bits may be used by other modules. See device-specific datasheet.

OFIE Bit 1 Oscillator fault interrupt enable. This bit enables the OFIFG interrupt.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled

Bits 0 This bit may be used by other modules. See device-specific datasheet.

IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

OFIFG

rw−1

Bits
7-2

These bits may be used by other modules. See device-specific datasheet.

OFIFG Bit 1 Oscillator fault interrupt flag. Because other bits in IFG1 may be used for other
modules, it is recommended to set or clear this bit using BIS.B or BIC.B
instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

Bits 0 This bit may be used by other modules. See device-specific datasheet.
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This chapter describes the operation of the MSP430 flash memory controller.
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5.1 Flash Memory Introduction

The MSP430 flash memory is bit-, byte-, and word-addressable and
programmable. The flash memory module has an integrated controller that
controls programming and erase operations. The controller has three
registers, a timing generator, and a voltage generator to supply program and
erase voltages.

MSP430 flash memory features include:

� Internal programming voltage generation

� Bit, byte or word programmable

� Ultralow-power operation

� Segment erase and mass erase

The block diagram of the flash memory and controller is shown in Figure 5−1.

Note: Minimum V CC During Flash Write or Erase

The minimum VCC voltage during a flash write or erase operation is 2.7 V.
If VCC falls below 2.7 V during a write or erase, the result of the write or erase
will be unpredictable.

Figure 5−1. Flash Memory Module Block Diagram
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5.2 Flash Memory Segmentation

MSP430 flash memory is partitioned into segments. Single bits, bytes, or
words can be written to flash memory, but the segment is the smallest size of
flash memory that can be erased.

The flash memory is partitioned into main and information memory sections.
There is no difference in the operation of the main and information memory
sections. Code or data can be located in either section. The differences
between the two sections are the segment size and the physical addresses.

The information memory has two 128-byte segments (MSP430F1101 devices
have only one). The main memory has two or more 512-byte segments. See
the device-specific datasheet for the complete memory map of a device.

The segments are further dividing into blocks. A block is 64 bytes, starting at
0xx00h, 0xx40h, 0xx80h, or 0xxC0h, and ending at 0xx3Fh, 0xx7Fh, 0xxBFh,
or 0xxFFh.

Figure 5−2 shows the flash segmentation using an example of 4-KB flash that
has eight main segments and both information segments.

Figure 5−2. Flash Memory Segments, 4-KB Example
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5.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash
memory is not being erased or written, the flash timing generator and voltage
generator are off, and the memory operates identically to ROM.

MSP430 flash memory is in-system programmable (ISP) without the need for
additional external voltage. The CPU can program its own flash memory. The
flash memory write/erase modes are selected with the BLKWRT, WRT,
MERAS, and ERASE bits and are:

� Byte/word write

� Block write

� Segment Erase

� Mass Erase (all main memory segments)

� All Erase (all segments)

Reading or writing to flash memory while it is being programmed or erased is
prohibited. If CPU execution is required during the write or erase, the code to
be executed must be in RAM. Any flash update can be initiated from within
flash memory or RAM.

5.3.1 Flash Memory Timing Generator

Write and erase operations are controlled by the flash timing generator shown
in Figure 5−3. The flash timing generator operating frequency, f(FTG), must be
in the range from ~ 257 kHz to ~ 476 kHz (see device-specific datasheet).

Figure 5−3. Flash Memory Timing Generator Block Diagram

FN5 FN0 PUC........... EMEX

Flash Timing Generator
Divider, 1−64

BUSY WAIT

Reset
fFTG

FSSELx

SMCLK

SMCLK

ACLK

MCLK

00

01

10

11

The flash timing generator can be sourced from ACLK, SMCLK, or MCLK. The
selected clock source should be divided using the FNx bits to meet the
frequency requirements for fFTG. If the fFTG frequency deviates from the
specification during the write or erase operation, the result of the write or erase
may be unpredictable, or the flash memory may be stressed above the limits
of reliable operation.
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5.3.2 Erasing Flash Memory

The erased level of a flash memory bit is 1. Each bit can be programmed from
1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The
smallest amount of flash that can be erased is a segment. There are three
erase modes selected with the ERASE and MERAS bits listed in Table 5−1.

Table 5−1.Erase Modes

MERAS ERASE Erase Mode

0 1 Segment erase

1 0 Mass erase (all main memory segments)

1 1 Erase all flash memory (main and information segments)

Any erase is initiated by a dummy write into the address range to be erased.
The dummy write starts the flash timing generator and the erase operation.
Figure 5−4 shows the erase cycle timing. The BUSY bit is set immediately after
the dummy write and remains set throughout the erase cycle. BUSY, MERAS,
and ERASE are automatically cleared when the cycle completes. The erase
cycle timing is not dependent on the amount of flash memory present on a
device. Erase cycle times are equivalent for all MSP430F1xx devices.

Figure 5−4.  Erase Cycle Timing

BUSY

Erase Operation Active

tAll Erase = tMass Erase = 5297/fFTG, tSeg Erase = 4819/fFTG

Erase Time, VCC Current Consumption is Increased

Generate 
Programming Voltage

Remove 
Programming Voltage

A dummy write to an address not in the range to be erased does not start the
erase cycle, does not affect the flash memory, and is not flagged in any way.
This errant dummy write is ignored.

Interrupts should be disabled before a flash erase cycle. After the erase cycle
has completed, interrupts may be re-enabled. Any interrupt that occurred
during the erase cycle will have its associated flag set, and will generate an
interrupt request when re-enabled.
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Initiating an Erase from Within Flash Memory

Any erase cycle can be initiated from within flash memory or from RAM. When
a flash segment erase operation is initiated from within flash memory, all timing
is controlled by the flash controller, and the CPU is held while the erase cycle
completes. After the erase cycle completes, the CPU resumes code execution
with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase
the code needed for execution after the erase. If this occurs, CPU execution
will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 5−5.

Figure 5−5. Erase Cycle from Within Flash Memory

Setup flash controller and erase
mode

Disable all interrupts and watchdog

Set LOCK=1, re-enable Interrupts
and watchdog

Dummy write

; Segment Erase from flash. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
DINT ; Disable interrupts
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable segment erase
CLR &0FC10h ; Dummy write, erase S1
MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK
... ; Re-enable WDT?
EINT ; Enable interrupts
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Initiating an Erase from RAM

Any erase cycle may be initiated from RAM. In this case, the CPU is not held
and can continue to execute code from RAM. The BUSY bit must be polled to
determine the end of the erase cycle before the CPU can access any flash
address again. If a flash access occurs while BUSY=1, it is an access violation,
ACCVIFG will be set, and the erase results will be unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 5−6.

Figure 5−6. Erase Cycle from Within RAM

yes
BUSY = 1

yes
BUSY = 1

Disable all interrupts and watchdog

Setup flash controller and
erase mode

Dummy write

Set LOCK = 1, re-enable
interrupts and watchdog

; Segment Erase from RAM. 514 kHz < SMCLK < 952 kHz
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
DINT ; Disable interrupts

L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+ERASE,&FCTL1 ; Enable erase

CLR &0FC10h ; Dummy write, erase S1
L2 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY+LOCK,&FCTL3 ; Done, set LOCK

... ; Re-enable WDT?
EINT ; Enable interrupts
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5.3.3 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in
Table 5−1.

Table 5−2.Write Modes

BLKWRT WRT Write Mode

0 1 Byte/word write

1 1 Block write

Both write modes use a sequence of individual write instructions, but using the
block write mode is approximately twice as fast as byte/word mode, because
the voltage generator remains on for the complete block write. Any instruction
that modifies a destination can be used to modify a flash location in either
byte/word write mode or block write mode.

The BUSY bit is set while a write operation is active and cleared when the
operation completes. If the write operation is initiated from RAM, the CPU must
not access flash while BUSY=1. Otherwise, an access violation occurs,
ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from
RAM. When initiating from within flash memory, all timing is controlled by the
flash controller, and the CPU is held while the write completes. After the write
completes, the CPU resumes code execution with the instruction following the
write. The byte/word write timing is shown in Figure 5−7.

Figure 5−7. Byte/Word Write Timing

ÎÎ
ÎÎ

ÎÎ
ÎÎ

BUSY

Programming Operation Active

Programming Time, VCC Current Consumption is Increased

tWord = 35/fFTG

Generate 
Programming Voltage

Remove 
Programming Voltage

When a byte/word write is executed from RAM, the CPU continues to execute
code from RAM. The BUSY bit must be zero before the CPU accesses flash
again, otherwise an access violation occurs, ACCVIFG is set, and the write
result is unpredictable.
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In byte/word mode, the internally-generated programming voltage is applied
to the complete 64-byte block, each time a byte or word is written, for 32 of the
35 fFTG cycles. With each byte or word write, the amount of time the block is
subjected to the programming voltage accumulates. The cumulative
programming time, tCPT, must not be exceeded for any block. If the cumulative
programming time is met, the block must be erased before performing any
further writes to any address within the block. See the device-specific
datasheet for specifications.

Initiating a Byte/Word Write from Within Flash Memory

The flow to initiate a byte/word write from flash is shown in Figure 5−8.

Figure 5−8. Initiating a Byte/Word Write from Flash

Setup flash controller 
and set WRT=1

Disable all interrupts and watchdog

 Set WRT=0, LOCK=1,
re-enable interrupts and watchdog

Write byte or word

; Byte/word write from flash. 514 kHz < SMCLK < 952 kHz
; Assumes 0FF1Eh is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.

MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
DINT ; Disable interrupts
MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2
MOV #FWKEY,&FCTL3 ; Clear LOCK
MOV #FWKEY+WRT,&FCTL1 ; Enable write

MOV #0123h,&0FF1Eh ; 0123h  −> 0FF1Eh

MOV #FWKEY,&FCTL1 ; Done. Clear WRT

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT?
EINT ; Enable interrupts
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Initiating a Byte/Word Write from RAM

The flow to initiate a byte/word write from RAM is shown in Figure 5−9.

Figure 5−9. Initiating a Byte/Word Write from RAM

yes
BUSY = 1

yes
BUSY = 1

Disable all interrupts and watchdog

Setup flash controller
and set WRT=1

Write byte or word

Set WRT=0, LOCK = 1
re-enable interrupts and watchdog

; Byte/word write from RAM. 514 kHz < SMCLK < 952 kHz

; Assumes 0FF1Eh is already erased

; Assumes ACCVIE = NMIIE = OFIE = 0.
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
DINT ; Disable interrupts

L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2

MOV #FWKEY,&FCTL3 ; Clear LOCK

MOV #FWKEY+WRT,&FCTL1 ; Enable write

MOV #0123h,&0FF1Eh ; 0123h −> 0FF1Eh

L2 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L2 ; Loop while busy

MOV #FWKEY,&FCTL1 ; Clear WRT

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT?
EINT ; Enable interrupts
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Block Write

The block write can be used to accelerate the flash write process when many
sequential bytes or words need to be programmed. The flash programming
voltage remains on for the duration of writing the 64-byte block. The
cumulative programming time tCPT must not be exceeded for any block during
a block write.

A block write cannot be initiated from within flash memory. The block write
must be initiated from RAM only. The BUSY bit remains set throughout the
duration of the block write. The WAIT bit must be checked between writing
each byte or word in the block. When WAIT is set the next byte or word of the
block can be written. When writing successive blocks, the BLKWRT bit must
be cleared after the current block is complete. BLKWRT can be set initiating
the next block write after the required flash recovery time given by tEnd. BUSY
is cleared following each block write completion indicating the next block can
be written. Figure 5−10 shows the block write timing.

Figure 5−10. Block-Write Cycle Timing
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Cumulative Programming Time tCPT ∼=< 4ms, VCC Current Consumption is Increased

Programming Voltage
Remove

Programming Voltage



Flash Memory Operation

5-12  Flash Memory Controller

Block Write Flow and Example

A block write flow is shown in Figure 5−8 and the following example.

Figure 5−11. Block Write Flow
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; Write one block starting at 0F000h.

; Must be executed from RAM, Assumes Flash is already erased.

; 514 kHz < SMCLK < 952 kHz

; Assumes ACCVIE = NMIIE = OFIE = 0.
MOV #32,R5 ; Use as write counter
MOV #0F000h,R6 ; Write pointer
MOV #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT

DINT ; Disable interrupts

L1 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L1 ; Loop while busy

MOV #FWKEY+FSSEL1+FN0,&FCTL2 ; SMCLK/2

MOV #FWKEY,&FCTL3 ; Clear LOCK

MOV #FWKEY+BLKWRT+WRT,&FCTL1 ; Enable block write

L2 MOV Write_Value,0(R6) ; Write location

L3 BIT #WAIT,&FCTL3 ; Test WAIT

JZ L3 ; Loop while WAIT=0

INCD R6 ; Point to next word

DEC R5 ; Decrement write counter

JNZ L2 ; End of block?

MOV #FWKEY,&FCTL1 ; Clear WRT,BLKWRT

L4 BIT #BUSY,&FCTL3 ; Test BUSY

JNZ L4 ; Loop while busy

MOV #FWKEY+LOCK,&FCTL3 ; Set LOCK

... ; Re-enable WDT if needed

EINT ; Enable interrupts
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5.3.4 Flash Memory Access During Write or Erase

When any write or any erase operation is initiated from RAM and while
BUSY=1, the CPU may not read or write to or from any flash location.
Otherwise, an access violation occurs, ACCVIFG is set, and the result is
unpredictable. Also if a write to flash is attempted with WRT=0, the ACCVIFG
interrupt flag is set, and the flash memory is unaffected.

When a byte/word write or any erase operation is initiated from within flash
memory, the flash controller returns op-code 03FFFh to the CPU at the next
instruction fetch. Op-code 03FFFh is the JMP PC instruction. This causes the
CPU to loop until the flash operation is finished. When the operation is finished
and BUSY=0, the flash controller allows the CPU to fetch the proper op-code
and program execution resumes.

The flash access conditions while BUSY=1 are listed in Table 5−3.

Table 5−3.Flash Access While BUSY = 1

Flash 
Operation

Flash
 Access

WAIT Result

Read 0 ACCVIFG = 0. 03FFFh is the value read

Any erase, or
Byte/word write

Write 0 ACCVIFG = 1. Write is ignoredAny erase, or
Byte/word write

Instruction
fetch

0 ACCVIFG = 0. CPU fetches 03FFFh. This
is the JMP PC instruction.

Any 0 ACCVIFG = 1, LOCK = 1

Read 1 ACCVIFG = 0, 03FFFh is the value read

Block write Write 1 ACCVIFG = 0, Write is ignored

Instruction
fetch

1 ACCVIFG = 1, LOCK = 1

All interrupt sources should be disabled before initiating any flash operation.
If an enabled interrupt were to occur during a flash operation, the CPU would
fetch 03FFFh as the address of the interrupt service routine. The CPU would
then execute the JMP PC instruction while BUSY=1. When the flash operation
finished, the CPU would begin executing code at address 03FFFh, not the
correct address for interrupt service routine.
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5.3.5 Stopping a Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by
setting the emergency exit bit EMEX. Setting the EMEX bit stops the active
operation immediately and stops the flash controller. All flash operations
cease, the flash returns to read mode, and all bits in the FCTL1 register are
reset. The result of the intended operation is unpredictable.

5.3.6 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit, password-protected, read/write registers. Any
read or write access must use word instructions and write accesses must
include the write password 0A5h in the upper byte. Any write to any FCTLx
register with any value other than 0A5h in the upper byte is a security key
violation, sets the KEYV flag and triggers a PUC system reset. Any read of any
FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word write operation is an access
violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode
when WAIT=1, but writing to FCTL1 in block write mode when WAIT=0 is an
access violation and sets ACCVIFG.

Any write to FCTL2 when the BUSY=1 is an access violation.

Any FCTLx register may be read when BUSY=1. A read will not cause an
access violation.

5.3.7 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV, and ACCVIFG.
ACCVIFG is set when an access violation occurs. When the ACCVIE bit is
re-enabled after a flash write or erase, a set ACCVIFG flag will generate an
interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not
necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG
may also be checked by software to determine if an access violation occurred.
ACCVIFG must be reset by software.

The key violation flag KEYV is set when any of the flash control registers are
written with an incorrect password. When this occurs, a PUC is generated
immediately resetting the device.

5.3.8 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options
support in-system programming:

� Program via JTAG

� Program via the Bootstrap Loader

� Program via a custom solution
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Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface
requires four signals (5 signals on 20- and 28-pin devices), ground and
optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables
the JTAG port and is not reversible. Further access to the device via JTAG is
not possible For more details see the Application report Programming a
Flash-Based MSP430 Using the JTAG Interface at www.ti.com/sc/msp430.

Programming Flash Memory via the Bootstrap loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables
users to read or program the flash memory or RAM using a UART serial
interface. Access to the MSP430 flash memory via the BSL is protected by a
256-bit, user-defined password. For more details see the Application report
Features of the MSP430 Bootstrap Loader at www.ti.com/sc/msp430.

Programming Flash Memory via a Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for
in-system and external custom programming solutions as shown in
Figure 5−12. The user can choose to provide data to the MSP430 through any
means available (UART, SPI, etc.). User-developed software can receive the
data and program the flash memory. Since this type of solution is developed
by the user, it can be completely customized to fit the application needs for
programming, erasing, or updating the flash memory.

Figure 5−12. User-Developed Programming Solution
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5.4 Flash Memory Registers

The flash memory registers are listed in Table 5−4.

Table 5−4.Flash Memory Registers

Register Short Form Register Type Address Initial State

Flash memory control register 1 FCTL1 Read/write 0128h 09600h with PUC

Flash memory control register 2 FCTL2 Read/write 012Ah 09642h with PUC

Flash memory control register 3 FCTL3 Read/write 012Ch 09618h with PUC

Interrupt Enable 1 IE1 Read/write 000h Reset with PUC
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FCTL1, Flash Memory Control Register

15 14 13 12 11 10 9 8

FRKEY, Read as 096h
FWKEY, Must be written as 0A5h

7 6 5 4 3 2 1 0

BLKWRT WRT Reserved Reserved Reserved MERAS ERASE Reserved

rw−0 rw−0 r0 r0 r0 rw−0 rw−0 r0

FRKEY/
FWKEY

Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

BLKWRT Bit 7 Block write mode. WRT must also be set for block write mode. BLKWRT is
automatically reset when EMEX is set.
0 Block-write mode is off
1 Block-write mode is on

WRT Bit 6 Write. This bit is used to select any write mode. WRT is automatically reset
when EMEX is set.
0 Write mode is off
1 Write mode is on

Reserved Bits
5-3

Reserved. Always read as 0.

MERAS
ERASE

Bit 2
Bit 1

Mass erase and erase. These bits are used together to select the erase mode.
MERAS and ERASE are automatically reset when EMEX is set.

MERAS ERASE Erase Cycle

0 0 No erase

0 1 Erase individual segment only

1 0 Erase all main memory segments

1 1 Erase all main and information memory segments

Reserved Bit 0 Reserved. Always read as 0.
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FCTL2, Flash Memory Control Register

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

FSSELx FNx

rw−0 rw−1 rw-0 rw-0 rw-0 rw−0 rw-1 rw−0

FWKEYx Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

FSSELx Bits
7−6

Flash controller clock source select
00 ACLK
01 MCLK
10 SMCLK
11 SMCLK

FNx Bits
5-0

Flash controller clock divider. These six bits select the divider for the flash
controller clock. The divisor value is FNx + 1. For example, when FNx=00h,
the divisor is 1. When FNx=03Fh the divisor is 64.
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FCTL3, Flash Memory Control Register FCTL3

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7 6 5 4 3 2 1 0

Reserved Reserved EMEX LOCK WAIT ACCVIFG KEYV BUSY

r0 r0 rw-0 rw-1 r-1 rw−0 rw-(0) r(w)−0

FWKEYx Bits
15-8

FCTLx password. Always read as 096h. Must be written as 0A5h or a PUC
will be generated.

Reserved Bits
7-6

Reserved. Always read as 0.

EMEX Bit 5 Emergency exit
0 No emergency exit
1 Emergency exit

LOCK Bit 4 Lock. This bit unlocks the flash memory for writing or erasing. The LOCK bit
can be set anytime during a byte/word write or erase operation and the
operation will complete normally. In the block write mode if the LOCK bit is set
while BLKWRT=WAIT=1, then BLKWRT and WAIT are reset and the mode
ends normally.
0 Unlocked
1 Locked

WAIT Bit 3 Wait. Indicates the flash memory is being written to.
0 The flash memory is not ready for the next byte/word write
1 The flash memory is ready for the next byte/word write

ACCVIFG Bit 2 Access violation interrupt flag
0 No interrupt pending
1 Interrupt pending

KEYV Bit 1 Flash security key violation. This bit indicates an incorrect FCTLx password
was written to any flash control register and generates a PUC when set. KEYV
must be reset with software.
0 FCTLx password was written correctly
1 FCTLx password was written incorrectly

BUSY Bit 0 Busy. This bit indicates the status of the flash timing generator.
0 Not Busy
1 Busy
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IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

ACCVIE

rw−0

Bits
7-6,
4-0

These bits may be used by other modules. See device-specific datasheet.

ACCVIE Bit 5 Flash memory access violation interrupt enable. This bit enables the
ACCVIFG interrupt. Because other bits in IE1 may be used for other modules,
it is recommended to set or clear this bit using BIS.B or BIC.B instructions,
rather than MOV.B or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled
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This chapter describes the operation of the SVS. The SVS is implemented in
MSP430x15x and MSP430x16x devices.
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6-2 Supply Voltage Supervisor

6.1 SVS Introduction

The supply voltage supervisor (SVS) is used to monitor the AVCC supply
voltage or an external voltage. The SVS can be configured to set a flag or
generate a POR reset when the supply voltage or external voltage drops below
a user-selected threshold.

The SVS features include:

� AVCC monitoring

� Selectable generation of POR

� Output of SVS comparator accessible by software

� Low-voltage condition latched and accessible by software

� 14 selectable threshold levels

� External channel to monitor external voltage

The SVS block diagram is shown in Figure 6−1.
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Figure 6−1. SVS Block Diagram
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6.2 SVS Operation

The SVS detects if the AVCC voltage drops below a selectable level. It can be
configured to provide a POR or set a flag, when a low-voltage condition occurs.
The SVS is disabled after a brownout reset to conserve current consumption.

6.2.1 Configuring the SVS

The VLDx bits are used to enable/disable the SVS and select one of 14
threshold levels (V(SVS_IT−)) for comparison with AVCC. The SVS is off when
VLDx = 0 and on when VLDx > 0. The SVSON bit does not turn on the SVS.
Instead, it reflects the on/off state of the SVS and can be used to determine
when the SVS is on.

When VLDx = 1111, the external SVSIN channel is selected. The voltage on
SVSIN is compared to an internal level of approximately 1.2 V.

6.2.2 SVS Comparator Operation

A low-voltage condition exists when AVCC drops below the selected threshold
or when the external voltage drops below its 1.2-V threshold. Any low-voltage
condition sets the SVSFG bit.

The PORON bit enables or disables the device-reset function of the SVS. If
PORON = 1, a POR is generated when SVSFG is set. If PORON = 0, a
low-voltage condition sets SVSFG, but does not generate a POR.

The SVSFG bit is latched. This allows user software to determine if a
low-voltage condition occurred previously. The SVSFG bit must be reset by
user software. If the low-voltage condition is still present when SVSFG is reset,
it will be immediately set again by the SVS.
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6.2.3 Changing the VLDx Bits

When the VLDx bits are changed, two settling delays are implemented to
allows the SVS circuitry to settle. During each delay, the SVS will not set
SVSFG. The delays, td(SVSon) and tsettle, are shown in Figure 6−2. The
td(SVSon) delay takes affect when VLDx is changed from zero to any non-zero
value and is a approximately 50 µs. The tsettle delay takes affect when the
VLDx bits change from any non-zero value to any other non-zero value and
is a maximum of ~12 µs. See the device-specific datasheet for the delay
parameters.

During the delays, the SVS will not flag a low-voltage condition or reset the
device, and the SVSON bit is cleared. Software can test the SVSON bit to
determine when the delay has elapsed and the SVS is monitoring the voltage
properly.

Figure 6−2. SVSON state When Changing VLDx
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6.2.4 SVS Operating Range

Each SVS level has hysteresis to reduce sensitivity to small supply voltage
changes when AVCC is close to the threshold. The SVS operation and
SVS/Brownout interoperation are shown in Figure 6−3.

Figure 6−3. Operating Levels for SVS and Brownout/Reset Circuit
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6.3 SVS Registers

The SVS registers are listed in Table 6−1.

Table 6−1.SVS Registers

Register Short Form Register Type Address Initial State

SVS Control Register SVSCTL Read/write 055h Reset with BOR

SVSCTL, SVS Control Register
7 6 5 4 3 2 1 0

VLDx PORON SVSON SVSOP SVSFG

rw−0† rw−0† rw−0† rw−0† rw−0† r r rw−0†

† Reset by a brownout reset only, not by a POR or PUC.

VLDx Bits
7-4

Voltage level detect. These bits turn on the SVS and select the nominal SVS
threshold voltage level. See the device−specific datasheet for parameters.
0000 SVS is off
0001 1.9 V
0010 2.1 V
0011 2.2 V
0100 2.3 V
0101 2.4 V
0110 2.5 V
0111 2.65 V
1000 2.8 V
1001 2.9 V
1010 3.05
1011 3.2 V
1100 3.35 V
1101 3.5 V
1110 3.7 V
1111 Compares external input voltage SVSIN to 1.2 V.

PORON Bit 3 POR on. This bit enables the SVSFG flag to cause a POR device reset.
0 SVSFG does not cause a POR
1 SVSFG causes a POR

SVSON Bit 2 SVS on. This bit reflects the status of SVS operation. This bit DOES NOT turn
on the SVS. The SVS is turned on by setting VLDx > 0.
0 SVS is Off
1 SVS is On

SVSOP Bit 1 SVS output. This bit reflects the output value of the SVS comparator.
0 SVS comparator output is high
1 SVS comparator output is low

SVSFG Bit 0 SVS flag. This bit indicates a low voltage condition. SVSFG remains set after
a low voltage condition until reset by software or a brownout reset.
0 No low voltage condition occurred
1 A low condition is present or has occurred
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This chapter describes the hardware multiplier. The hardware multiplier is
implemented in MSP430x14x and MSP430x16x devices.
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7.1 Hardware Multiplier Introduction

The hardware multiplier is a peripheral and is not part of the MSP430 CPU.
This means, its activities do not interfere with the CPU activities. The multiplier
registers are peripheral registers that are loaded and read with CPU
instructions.

The hardware multiplier supports:

� Unsigned multiply

� Signed multiply

� Unsigned multiply accumulate

� Signed multiply accumulate

� 16×16 bits, 16×8 bits, 8×16 bits, 8×8 bits

The hardware multiplier block diagram is shown in Figure 7−1.

Figure 7−1. Hardware Multiplier Block Diagram
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7.2 Hardware Multiplier Operation

The hardware multiplier supports unsigned multiply, signed multiply, unsigned
multiply accumulate, and signed multiply accumulate operations. The type of
operation is selected by the address the first operand is written to.

The hardware multiplier has two 16-bit operand registers, OP1 and OP2, and
three result registers, RESLO, RESHI, and SUMEXT. RESLO stores the low
word of the result, RESHI stores the high word of the result, and SUMEXT
stores information about the result. The result is ready in three MCLK cycles
and can be read with the next instruction after writing to OP2, except when
using an indirect addressing mode to access the result. When using indirect
addressing for the result, a NOP is required before the result is ready.

7.2.1 Operand Registers

The operand one register OP1 has four addresses, shown in Table 7−1, used
to select the multiply mode. Writing the first operand to the desired address
selects the type of multiply operation but does not start any operation. Writing
the second operand to the operand two register OP2 initiates the multiply
operation. Writing OP2 starts the selected operation with the values stored in
OP1 and OP2. The result is written into the three result registers RESLO,
RESHI, and SUMEXT.

Repeated multiply operations may be performed without reloading OP1 if the
OP1 value is used for successive operations. It is not necessary to re-write the
OP1 value to perform the operations.

Table 7−1.OP1 addresses

OP1 Address Register Name Operation

0130h MPY Unsigned multiply

0132h MPYS Signed multiply

0134h MAC Unsigned multiply accumulate

0136h MACS Signed multiply accumulate
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7.2.2 Result Registers

The result low register RESLO holds the lower 16-bits of the calculation result.
The result high register RESHI contents depend on the multiply operation and
are listed in Table 7−2.

Table 7−2.RESHI Contents

Mode RESHI Contents

MPY Upper 16-bits of the result

MPYS The MSB is the sign of the result. The remaining bits are the
upper 15-bits of the result. Two’s complement notation is used
for the result.

MAC Upper 16-bits of the result

MACS Upper 16-bits of the result. Two’s complement notation is used
for the result.

The sum extension registers SUMEXT contents depend on the multiply
operation and are listed in Table 7−3.

Table 7−3.SUMEXT Contents

Mode SUMEXT

MPY SUMEXT is always 0000h

MPYS SUMEXT contains the extended sign of the result
00000h Result was positive or zero
0FFFFh Result was negative

MAC SUMEXT contains the carry of the result
0000h No carry for result
0001h Result has a carry

MACS SUMEXT contains the extended sign of the result
00000h Result was positive or zero
0FFFFh Result was negative

MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in the
MACS mode. The accumulator range for positive numbers is 0 to 7FFF FFFFh
and for negative numbers is 0FFFF FFFFh to 8000 0000h. An overflow occurs
when the sum of two negative numbers yields a result that is in the range for
a positive number. An underflow occurs when the sum of two positive numbers
yields a result that is in the range for a negative number. In both of these cases,
the SUMEXT register contains the correct sign of the result, 0FFFFh for
overflow and 0000h for underflow. User software must detect and handle
these conditions appropriately.
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7.2.3 Software Examples

Examples for all multiplier modes follow. All 8x8 modes use the absolute
address for the registers because the assembler will not allow .B access to
word registers when using the labels from the standard definitions file.

; 16x16 Unsigned Multiply

MOV #01234h,&MPY ; Load first operand

MOV #05678h,&OP2 ; Load second operand

; ... ; Process results

; 8x8 Unsigned Multiply. Absolute addressing.

MOV.B #012h,&0130h ; Load first operand

MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply

MOV #01234h,&MPYS ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply. Absolute addressing.

MOV.B #012h,&0132h ; Load first operand

SXT &MPYS ; Sign extend first operand

MOV.B #034h,&0138h ; Load 2nd operand

SXT &OP2 ; Sign extend 2nd operand

; (triggers 2nd multiplication)

; ... ; Process results

; 16x16 Unsigned Multiply Accumulate

MOV #01234h,&MAC ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Unsigned Multiply Accumulate. Absolute addressing

MOV.B #012h,&0134h ; Load first operand

MOV.B #034h,&0138h ; Load 2nd operand

; ... ; Process results

; 16x16 Signed Multiply Accumulate

MOV #01234h,&MACS ; Load first operand

MOV #05678h,&OP2 ; Load 2nd operand

; ... ; Process results

; 8x8 Signed Multiply Accumulate. Absolute addressing

MOV.B #012h,&0136h ; Load first operand

SXT &MACS ; Sign extend first operand

MOV.B #034h,R5 ; Temp. location for 2nd operand

SXT R5 ; Sign extend 2nd operand

MOV R5,&OP2 ; Load 2nd operand

; ... ; Process results
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7.2.4 Indirect Addressing of RESLO

When using indirect or indirect autoincrement addressing mode to access the
result registers, At least one instruction is needed between loading the second
operand and accessing one of the result registers:

; Access multiplier results with indirect addressing

MOV #RESLO,R5 ; RESLO address in R5 for indirect

MOV &OPER1,&MPY ; Load 1st operand

MOV &OPER2,&OP2 ; Load 2nd operand

NOP ; Need one cycle

MOV @R5+,&xxx ; Move RESLO

MOV @R5,&xxx ; Move RESHI

7.2.5 Using Interrupts

If an interrupt occurs after writing OP1, but before writing OP2, and the
multiplier is used in servicing that interrupt, the original multiplier mode
selection is lost and the results are unpredictable. To avoid this, disable
interrupts before using the hardware multiplier or do not use the multiplier in
interrupt service routines.

; Disable interrupts before using the hardware multiplier

DINT ; Disable interrupts

NOP ; Required for DINT

MOV #xxh,&MPY ; Load 1st operand

MOV #xxh,&OP2 ; Load 2nd operand

EINT ; Interrupts may be enable before

; Process results
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7.3 Hardware Multiplier Registers

The hardware multiplier registers are listed in Table 7−4.

Table 7−4.Hardware Multiplier Registers

Register Short Form Register Type Address Initial State

Operand one - multiply MPY Read/write 0130h Unchanged

Operand one - signed multiply MPYS Read/write 0132h Unchanged

Operand one - multiply accumulate MAC Read/write 0134h Unchanged

Operand one - signed multiply accumulate MACS Read/write 0136h Unchanged

Operand two OP2 Read/write 0138h Unchanged

Result low word RESLO Read/write 013Ah Undefined

Result high word RESHI Read/write 013Ch Undefined

Sum Extension register SUMEXT Read 013Eh Undefined
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The DMA controller module transfers data from one address to another
without CPU intervention. This chapter describes the operation of the DMA
controller. The DMA controller is implemented in MSP430x15x and
MSP430x16x devices.
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8.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address
to another, without CPU intervention, across the entire address range. For
example, the DMA controller can move data from the ADC12 conversion
memory to RAM.

Using the DMA controller can increase the throughput of peripheral modules.
It can also reduce system power consumption by allowing the CPU to remain
in a low-power mode without having to awaken to move data to or from a
peripheral.

The DMA controller features include:

� Three independent transfer channels

� Configurable DMA channel priorities

� Requires only two MCLK clock cycles

� Byte or word and mixed byte/word transfer capability

� Block sizes up to 65535 bytes or words

� Configurable transfer trigger selections

� Selectable edge or level-triggered transfer

� Four addressing modes

� Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 8−1.
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Figure 8−1. DMA Controller Block Diagram

D
M

A
 P

riority A
nd C

ontrol

ENNMI

DT

DMA Channel 2

DMASRSBYTE

DMA2SZ

DMA2DA

DMA2SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DT

DMA Channel 1

DMASRSBYTE

DMA1SZ

DMA1DA

DMA1SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

DT

DMA Channel 0

DMASRSBYTE

DMA0SZ

DMA0DA

DMA0SA

DMADSTBYTE

DMASRCINCRx

DMADSTINCRx

2

2

3

DMADTx

DMAEN

Address
Space

NMI Interrupt Request

JTAG Active

Halt

Halt CPU

ROUNDROBIN

DMAONFETCH

DAC12_0IFG

DMAE0

DMAREQ

DMA0TSELx

4

DMA2IFG

TACCR2_CCIFG
TBCCR2_CCIFG

USART0 data received
USART0 transmit ready

USART1 transmit ready
USART1 data received

DMAE0

4

DMA0IFG

0000
0001
0010
0011
0100
0101

−−−

1111
1110

0110
0111
1000
1001
1010

DMAE0

4

DMA1IFG

0000
0001
0010
0011
0100
0101

−−−

1111
1110

0110
0111
1000
1001
1010

0000
0001
0010
0011
0100
0101

−−−

1111
1110

0110
0111
1000
1001
1010

Multiplier ready
No trigger
No trigger

DAC12_0IFG

DMAREQ
TACCR2_CCIFG
TBCCR2_CCIFG

USART0 data received
USART0 transmit ready

USART1 transmit ready
USART1 data received

Multiplier ready
No trigger
No trigger

DAC12_0IFG

DMAREQ
TACCR2_CCIFG
TBCCR2_CCIFG

USART0 data received
USART0 transmit ready

USART1 transmit ready
USART1 data received

Multiplier ready
No trigger
No trigger

1011

1011

1011

DMA1TSELx

DMA2TSELx

TACCR0_CCIFG
TBCCR0_CCIFG

TACCR0_CCIFG
TBCCR0_CCIFG

TACCR0_CCIFG
TBCCR0_CCIFG

ADC12IFGx

ADC12IFGx

ADC12IFGx



8-4

8.2 DMA Operation

The DMA controller is configured with user software. The setup and operation
of the DMA is discussed in the following sections.

8.2.1 DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for
each DMA channel is independently configurable. For example, channel 0
may transfer between two fixed addresses, while channel 1 transfers between
two blocks of addresses. The addressing modes are shown in Figure 8−2. The
addressing modes are:

� Fixed address to fixed address

� Fixed address to block of addresses

� Block of addresses to fixed address

� Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and
DMADSTINCRx control bits. The DMASRCINCRx bits select if the source
address is incremented, decremented, or unchanged after each transfer. The
DMADSTINCRx bits select if the destination address is incremented,
decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte.
When transferring word-to-byte, only the lower byte of the source-word
transfers. When transferring byte-to-word, the upper byte of the
destination-word is cleared when the transfer occurs.

Figure 8−2. DMA Addressing Modes
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8.2.2 DMA Transfer Modes

The DMA controller has six transfer modes selected by the DMADTx bits as
listed in Table 8−1. Each channel is individually configurable for its transfer
mode. For example, channel 0 may be configured in single transfer mode,
while channel 1 is configured for burst-block transfer mode, and channel 2
operates in repeated block mode. The transfer mode is configured
independently from the addressing mode. Any addressing mode can be used
with any transfer mode.

Table 8−1.DMA Transfer Modes

DMADTx Transfer
Mode

Description

000 Single transfer Each transfer requires a trigger. DMAEN is
automatically cleared when DMAxSZ transfers have
been made.

001 Block transfer A complete block is transferred with one trigger.
DMAEN is automatically cleared at the end of the
block transfer.

010, 011 Burst-block
transfer

CPU activity is interleaved with a block transfer.
DMAEN is automatically cleared at the end of the
burst-block transfer.

100 Repeated
single transfer

Each transfer requires a trigger. DMAEN remains
enabled.

101 Repeated
block transfer

A complete block is transferred with one trigger.
DMAEN remains enabled.

110, 111 Repeated
burst-block
transfer

CPU activity is interleaved with a block transfer.
DMAEN remains enabled.
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Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger.
The single transfer state diagram is shown in Figure 8−3.

The DMAxSZ register is used to define the number of transfers to be made.
The DMADSTINCRx and DMASRCINCRx bits select if the destination
address and the source address are incremented or decremented after each
transfer. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary
registers. The temporary values of DMAxSA and DMAxDA are incremented
or decremented after each transfer. The DMAxSZ register is decremented
after each transfer. When the DMAxSZ register decrements to zero it is
reloaded from its temporary register and the corresponding DMAIFG flag is
set. When DMADTx = 0, the DMAEN bit is cleared automatically when
DMAxSZ decrements to zero and must be set again for another transfer to
occur.

In repeated single transfer mode, the DMA controller remains enabled with
DMAEN = 1, and a transfer occurs every time a trigger occurs.
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Figure 8−3. DMA Single Transfer State Diagram
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Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one
trigger. When DMADTx = 1, the DMAEN bit is cleared after the completion of
the block transfer and must be set again before another block transfer can be
triggered. After a block transfer has been triggered, further trigger signals
occurring during the block transfer are ignored. The block transfer state
diagram is shown in Figure 8−4.

The DMAxSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary
registers. The temporary values of DMAxSA and DMAxDA are incremented
or decremented after each transfer in the block. The DMAxSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAxSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

During a block transfer, the CPU is halted until the complete block has been
transferred. The block transfer takes 2 x MCLK x DMAxSZ clock cycles to
complete. CPU execution resumes with its previous state after the block
transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion
of the block transfer. The next trigger after the completion of a repeated block
transfer triggers another block transfer.



8-9

Figure 8−4. DMA Block Transfer State Diagram
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Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity
interleaved. The CPU executes 2 MCLK cycles after every four byte/word
transfers of the block resulting in 20% CPU execution capacity. After the
burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is
cleared. DMAEN must be set again before another burst-block transfer can be
triggered. After a burst-block transfer has been triggered, further trigger
signals occurring during the burst-block transfer are ignored. The burst-block
transfer state diagram is shown in Figure 8−5.

The DMAxSZ register is used to define the size of the block and the
DMADSTINCRx and DMASRCINCRx bits select if the destination address
and the source address are incremented or decremented after each transfer
of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary
registers. The temporary values of DMAxSA and DMAxDA are incremented
or decremented after each transfer in the block. The DMAxSZ register is
decremented after each transfer of the block and shows the number of
transfers remaining in the block. When the DMAxSZ register decrements to
zero it is reloaded from its temporary register and the corresponding DMAIFG
flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of
the burst-block transfer and no further trigger signals are required to initiate
another burst-block transfer. Another burst-block transfer begins immediately
after completion of a burst-block transfer. In this case, the transfers must be
stopped by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set.
In repeated burst-block mode the CPU executes at 20% capacity continuously
until the repeated burst-block transfer is stopped.
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Figure 8−5. DMA Burst-Block Transfer State Diagram
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8.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the
DMAxTSELx bits as described in Table 8−2.The DMAxTSELx bits should be
modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur.

When selecting the trigger, the trigger must not have already occurred, or the
transfer will not take place. For example, if the TACCR2 CCIFG bit is selected
as a trigger, and it is already set, no transfer will occur until the next time the
TACCR2 CCIFG bit is set.

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge
of the trigger signal initiates the transfer. In single-transfer mode, each transfer
requires its own trigger. When using block or burst-block modes, only one
trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation,
level-sensitive triggers can only be used when external trigger DMAE0 is
selected as the trigger. DMA transfers are triggered as long as the trigger
signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to
complete. If the trigger signal goes low during a block or burst-block transfer,
the DMA controller is held in its current state until the trigger goes back high
or until the DMA registers are modified by software. If the DMA registers are
not modified by software, when the trigger signal goes high again, the transfer
resumes from where it was when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3}
are recommended because the DMAEN bit is automatically reset after the
configured transfer.

Halting Executing Instructions for DMA Transfers

The DMAONFETCH bit controls when the CPU is halted for a DMA transfer.
When DMAONFETCH = 0, the CPU is halted immediately and the transfer
begins when a trigger is received. When DMAONFETCH = 1, the CPU finishes
the currently executing instruction before the DMA controller halts the CPU
and the transfer begins.

Note: DMAONFETCH Must Be Used When The DMA Writes To Flash

If the DMA controller is used to write to flash memory, the DMAONFETCH
bit must be set. Otherwise, unpredictable operation can result.
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Table 8−2.DMA Trigger Operation

DMAxTSELx Operation

0000 A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset
when the transfer starts

0001 A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is
automatically reset when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2
CCIFG flag will not trigger a  transfer.

0010 A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is
automatically reset when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2
CCIFG flag will not trigger a  transfer.

0011 A transfer is triggered when USART0 receives new data. In I2C mode, the trigger is the
data-received condition, not the RXRDYIFG flag. RXRDYIFG is not cleared when the transfer
starts, and setting RXRDYIFG with software will not trigger a transfer. If RXRDYIE is set, the
data received condition will not trigger a transfer. In UART or SPI mode, a transfer is triggered
when the URXIFG0 flag is set. URXIFG0 is automatically reset when the transfer starts. If
URXIE0 is set, the URXIFG0 flag will not trigger a transfer.

0100 A transfer is triggered when USART0 is ready to transmit new data. In I2C mode, the trigger
is the transmit-ready condition, not the TXRDYIFG flag. TXRDYIFG is not cleared when the
transfer starts, and setting TXRDYIFG with software will not trigger a transfer. If TXRDYIE is
set, the transmit ready condition will not trigger a transfer. In UART or SPI mode, a transfer is
triggered when the UTXIFG0 flag is set. UTXIFG0 is automatically reset when the transfer
starts. If UTXIE0 is set, the UTXIFG0 flag will not trigger a transfer.

0101 A transfer is triggered when the DAC12_0CTL DAC12IFG flag is set. The DAC12_0CTL
DAC12IFG flag is automatically cleared when the transfer starts. If the DAC12_0CTL
DAC12IE bit is set, the DAC12_0CTL DAC12IFG flag will not trigger a transfer.

0110 A transfer is triggered by an ADC12IFGx flag. When single-channel conversions are
performed, the corresponding ADC12IFGx is the trigger. When sequences are used, the
ADC12IFGx for the last conversion in the sequence is the trigger. A transfer is triggered when
the conversion is completed and the ADC12IFGx is set. Setting the ADC12IFGx with software
will not trigger a transfer. All ADC12IFGx flags are automatically reset when the associated
ADC12MEMx register is accessed by the DMA controller.

0111 A transfer is triggered when the TACCR0 CCIFG flag is set. The TACCR0 CCIFG flag is
automatically reset when the transfer starts. If the TACCR0 CCIE bit is set, the TACCR0
CCIFG flag will not trigger a  transfer.

1000 A transfer is triggered when the TBCCR0 CCIFG flag is set. The TBCCR0 CCIFG flag is
automatically reset when the transfer starts. If the TBCCR0 CCIE bit is set, the TBCCR0
CCIFG flag will not trigger a  transfer.

1001 A transfer is triggered when the URXIFG1 flag is set. URXIFG1 is automatically reset when
the transfer starts. If URXIE1 is set, the URXIFG1 flag will not trigger a transfer.

1010 A transfer is triggered when the UTXIFG1 flag is set. UTXIFG1 is automatically reset when
the transfer starts. If UTXIE1 is set, the UTXIFG1 flag will not trigger a transfer.

1011 A transfer is triggered when the hardware multiplier is ready for a new operand.

1100 No transfer is triggered.

1101 No transfer is triggered.

1110 A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG
triggers channel 2, and DMA2IFG triggers channel 0. None of the DMAxIFG flags are
automatically reset when the transfer starts.

1111 A transfer is triggered by the external trigger DMAE0.
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8.2.4 Stopping DMA Transfers

There are two ways to stop DMA transfers in progress:

� A single, block, or burst-block transfer may be stopped with an NMI
interrupt, if the ENNMI bit is set in register DMACTL1.

� A burst-block transfer may be stopped by clearing the DMAEN bit.

8.2.5 DMA Channel Priorities

The default DMA channel priorities are DMA0−DMA1−DMA2. If two or three
triggers happen simultaneously or are pending, the channel with the highest
priority completes its transfer (single, block or burst-block transfer) first, then
the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher priority channel is triggered. The higher
priority channel waits until the transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit.
When the ROUNDROBIN bit is set, the channel that completes a transfer
becomes the lowest priority. The order of the priority of the channels always
stays the same, DMA0−DMA1−DMA2, for example:

DMA Priority Transfer Occurs New DMA Priority

DMA0 − DMA1 − DMA2 DMA1 DMA2 − DMA0 − DMA1

DMA2 − DMA0 − DMA1 DMA2 DMA0 − DMA1 − DMA2

DMA0 − DMA1 − DMA2 DMA0 DMA1 − DMA2 − DMA0

When the ROUNDROBIN bit is cleared the channel priority returns to the
default priority.
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8.2.6 DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize
before each single transfer or complete block or burst-block transfer. Each
byte/word transfer requires two MCLK cycles after synchronization, and one
cycle of wait time after the transfer. Because the DMA controller uses MCLK,
the DMA cycle time is dependent on the MSP430 operating mode and clock
system setup.

If the MCLK source is active, but the CPU is off, the DMA controller will use the
MCLK source for each transfer, without re-enabling the CPU. If the MCLK
source is off, the DMA controller will temporarily restart MCLK, sourced with
DCOCLK, for the single transfer or complete block or burst-block transfer. The
CPU remains off, and after the transfer completes, MCLK is turned off. The
maximum DMA cycle time for all operating modes is shown in Table 8−3.

Table 8−3.Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source Maximum DMA Cycle Time

Active mode MCLK=DCOCLK 4 MCLK cycles

Active mode MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 5 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 5 MCLK cycles + 6 µs†

Low-power mode LPM0/1 MCLK=LFXT1CLK 5 MCLK cycles

Low-power mode LPM3 MCLK=LFXT1CLK 5 MCLK cycles

Low-power mode LPM4 MCLK=LFXT1CLK 5 MCLK cycles + 6 µs†

† The additional 6 µs are needed to start the DCOCLK. It is the t(LPMx) parameter in the data sheet.
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8.2.7 Using DMA with System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts
remain pending until the completion of the transfer. NMI interrupts can
interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an
interrupt service routine or other routine must execute with no interruptions,
the DMA controller should be disabled prior to executing the routine.

8.2.8 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any
mode, when the corresponding DMAxSZ register counts to zero. If the
corresponding DMAIE and GIE bits are set, an interrupt request is generated.

All DMAIFG flags source only one DMA controller interrupt vector and the
interrupt vector is shared with the DAC12 module. Software must check the
DMAIFG and DAC12IFG flags to determine the source of the interrupt. The
DMAIFG flags are not reset automatically and must be reset by software.
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8.2.9 Using the I 2C Module with the DMA Controller

The I2C module provides two trigger sources for the DMA controller. The I2C
module can trigger a transfer when new I2C data is received and the when the
transmit data is needed.

The TXDMAEN and RXDMAEN bits enable or disable the use of the DMA
controller with the I2C module. When RXDMAEN = 1, the DMA controller can
be used to transfer data from the I2C module after the I2C modules receives
data. When RXDMAEN = 1, RXRDYIE is ignored and RXRDYIFG will not
generate an interrupt.

When TXDMAEN = 1, the DMA controller can be used to transfer data to the
I2C module for transmission. When TXDMAEN = 1, TXRDYIE is ignored and
TXRDYIFG will not generate an interrupt.

8.2.10 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data from any ADC12MEMx register to another location. DMA transfers are
done without CPU intervention and independently of any low-power modes.
The DMA controller increases throughput of the ADC12 module, and
enhances low-power applications allowing the CPU to remain off while data
transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx
= {0,2} the ADC12IFGx flag for the ADC12MEMx used for the conversion can
trigger a DMA transfer. When CONSEQx = {1,3}, the ADC12IFGx flag for the
last ADC12MEMx in the sequence can trigger a DMA transfer. Any
ADC12IFGx flag is automatically cleared when the DMA controller accesses
the corresponding ADC12MEMx.

8.2.11 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move
data to the DAC12_xDAT register. DMA transfers are done without CPU
intervention and independently of any low-power modes. The DMA controller
increases throughput to the DAC12 module, and enhances low-power
applications allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using
the DMA controller with the DAC12. For example, an application that produces
a sinusoidal waveform may store the sinusoid values in a table. The DMA
controller can continuously and automatically transfer the values to the DAC12
at specific intervals creating the sinusoid with zero CPU execution. The
DAC12_xCTL DAC12IFG flag is automatically cleared when the DMA
controller accesses the DAC12_xDAT register.
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8.3 DMA Registers

The DMA registers are listed in Table 8−4:

Table 8−4.DMA Registers

Register Short Form Register Type Address Initial State

DMA control 0 DMACTL0 Read/write 0122h Reset with POR

DMA control 1 DMACTL1 Read/write 0124h Reset with POR

DMA channel 0 control DMA0CTL Read/write 01E0h Reset with POR

DMA channel 0 source address DMA0SA Read/write 01E2h Unchanged

DMA channel 0 destination address DMA0DA Read/write 01E4h Unchanged

DMA channel 0 transfer size DMA0SZ Read/write 01E6h Unchanged

DMA channel 1 control DMA1CTL Read/write 01E8h Reset with POR

DMA channel 1 source address DMA1SA Read/write 01EAh Unchanged

DMA channel 1 destination address DMA1DA Read/write 01ECh Unchanged

DMA channel 1 transfer size DMA1SZ Read/write 01EEh Unchanged

DMA channel 2 control DMA2CTL Read/write 01F0h Reset with POR

DMA channel 2 source address DMA2SA Read/write 01F2h Unchanged

DMA channel 2 destination address DMA2DA Read/write 01F4h Unchanged

DMA channel 2 transfer size DMA2SZ Read/write 01F6h Unchanged
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DMACTL0, DMA Control Register 0

15 14 13 12 11 10 9 8

Reserved DMA2TSELx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

DMA1TSELx DMA0TSELx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Reserved Bits
15−12

Reserved

DMA2
TSELx

Bits
11−8

DMA trigger select. These bits select the DMA transfer trigger.
0000 DMAREQ bit (software trigger)
0001 TACCR2 CCIFG bit
0010 TBCCR2 CCIFG bit
0011 URXIFG0 (UART/SPI mode), USART0 data received (I2C mode)
0100 UTXIFG0 (UART/SPI mode), USART0 transmit ready (I2C mode)
0101 DAC12_0CTL DAC12IFG bit
0110 ADC12 ADC12IFGx bit
0111 TACCR0 CCIFG bit
1000 TBCCR0 CCIFG bit
1001 URXIFG1 bit
1010 UTXIFG1 bit
1011 Multiplier ready
1100 No action
1101 No action
1110 DMA0IFG bit triggers DMA channel 1

DMA1IFG bit triggers DMA channel 2
DMA2IFG bit triggers DMA channel 0

1111 External trigger DMAE0

DMA1
TSELx

Bits
7−4

Same as DMA2TSELx

DMA0
TSELx

Bits
3–0

Same as DMA2TSELx
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DMACTL1, DMA Control Register 1

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 0 DMA
ONFETCH

ROUND
ROBIN ENNMI

r0 r0 r0 r0 r0 rw−(0) rw−(0) rw−(0)

Reserved Bits
15−3

Reserved. Read only. Always read as 0.

DMA
ONFETCH

Bit 2 DMA on fetch
0 The DMA transfer occurs immediately
1 The DMA transfer occurs on next instruction fetch after the trigger

ROUND
ROBIN

Bit 1 Round robin. This bit enables the round-robin DMA channel priorities.
0 DMA channel priority is DMA0 − DMA1 − DMA2
1 DMA channel priority changes with each transfer

ENNMI Bit 0 Enable NMI. This bit enables the interruption of a DMA transfer by an NMI
interrupt. When an NMI interrupts a DMA transfer, the current transfer is
completed normally, further transfers are stopped, and DMAABORT is set.
0 NMI interrupt does not interrupt DMA transfer
1 NMI interrupt interrupts a DMA transfer
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DMAxCTL, DMA Channel x Control Register

15 14 13 12 11 10 9 8

Reserved DMADTx DMADSTINCRx DMASRCINCRx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

DMA
DSTBYTE

DMA
SRCBYTE DMALEVEL DMAEN DMAIFG DMAIE DMA

ABORT DMAREQ

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Reserved Bit 15 Reserved

DMADTx Bits
14−12

DMA Transfer mode.
000 Single transfer
001 Block transfer
010 Burst-block transfer
011 Burst-block transfer
100 Repeated single transfer
101 Repeated block transfer
110 Repeated burst-block transfer
111 Repeated burst-block transfer

DMA
DSTINCRx

Bits
11−10

DMA destination increment. This bit selects automatic incrementing or
decrementing of the destination address after each byte or word transfer.
When DMADSTBYTE=1, the destination address increments/decrements by
one. When DMADSTBYTE=0, the destination address
increments/decrements by two. The DMAxDA is copied into a temporary
register and the temporary register is incremented or decremented. DMAxDA
is not incremented or decremented.
00 Destination address is unchanged
01 Destination address is unchanged
10 Destination address is decremented
11 Destination address is incremented

DMA
SRCINCRx

Bits
9−8

DMA source increment. This bit selects automatic incrementing or
decrementing of the source address for each byte or word transfer. When
DMASRCBYTE=1, the source address increments/decrements by one.
When DMASRCBYTE=0, the source address increments/decrements by
two. The DMAxSA is copied into a temporary register and the temporary
register is incremented or decremented. DMAxSA is not incremented or
decremented.
00 Source address is unchanged
01 Source address is unchanged
10 Source address is decremented
11 Source address is incremented

DMA
DSTBYTE

Bit 7 DMA destination byte. This bit selects the destination as a byte or word.
0 Word
1 Byte
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DMA
SRCBYTE

Bit 6 DMA source byte. This bit selects the source as a byte or word.
0 Word
1 Byte

DMA
LEVEL

Bit 5 DMA level. This bit selects between edge-sensitive and level-sensitive
triggers.
0 Edge sensitive (rising edge)
1 Level sensitive (high level)

DMAEN Bit 4 DMA enable
0 Disabled
1 Enabled

DMAIFG Bit 3 DMA interrupt flag
0 No interrupt pending
1 Interrupt pending

DMAIE Bit 2 DMA interrupt enable
0 Disabled
1 Enabled

DMA
ABORT

Bit 1 DMA Abort. This bit indicates if a DMA transfer was interrupt by an NMI.
0 DMA transfer not interrupted
1 DMA transfer was interrupted by NMI

DMAREQ Bit 0 DMA request. Software-controlled DMA start. DMAREQ is reset
automatically.
0 No DMA start
1 Start DMA

DMAxSA, DMA Source Address Register

15 14 13 12 11 10 9 8

DMAxSAx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSAx

rw rw rw rw rw rw rw rw

DMAxSAx Bits
15−0

DMA source address. The source address register points to the DMA source
address for single transfers or the first source address for block transfers. The
source address register remains unchanged during block and burst-block
transfers.



8-23

DMAxDA, DMA Destination Address Register

15 14 13 12 11 10 9 8

DMAxDAx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxDAx

rw rw rw rw rw rw rw rw

DMAxDAx Bits
15−0

DMA destination address. The destination address register points to the
destination address for single transfers or the first address for block transfers.
The DMAxDA register remains unchanged during block and burst-block
transfers.

DMAxSZ, DMA Size Address Register

15 14 13 12 11 10 9 8

DMAxSZx

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

DMAxSZx

rw rw rw rw rw rw rw rw

DMAxSZx Bits
15−0

DMA size. The DMA size register defines the number of byte/word data per
block transfer. DMAxSZ register decrements with each word or byte transfer.
When DMAxSZ decrements to 0, it is immediately and automatically reloaded
with its previously initialized value.
00000h Transfer is disabled
00001h One byte or word is transferred
00002h Two bytes or words are transferred
:
0FFFFh 65535 bytes or words are transferred
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This chapter describes the operation of the digital I/O ports. Ports P1-P2 are
implemented in MSP430x11xx devices. Ports P1-P3 are implemented in
MSP430x12xx devices. Ports P1-P6 are implemented in MSP430x13x,
MSP430x14x, MSP430x15x, and MSP430x16x devices.
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Digital I/O Introduction

9-2 Digital I/O

9.1 Digital I/O Introduction

MSP430 devices have up to 6 digital I/O ports implemented, P1 - P6. Each port
has eight I/O pins. Every I/O pin is individually configurable for input or output
direction, and each I/O line can be individually read or written to.

Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O
lines can be individually enabled and configured to provide an interrupt on a
rising edge or falling edge of an input signal. All P1 I/O lines source a single
interrupt vector, and all P2 I/O lines source a different, single interrupt vector.

The digital I/O features include:

� Independently programmable individual I/Os

� Any combination of input or output

� Individually configurable P1 and P2 interrupts

� Independent input and output data registers
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9.2 Digital I/O Operation 

The digital I/O is configured with user software. The setup and operation of the
digital I/O is discussed in the following sections.

9.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the
corresponding I/O pin when the pin is configured as I/O function.

Bit = 0: The input is low

Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption
while the write attempt is active.

9.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding
I/O pin when the pin is configured as I/O function and output direction.

Bit = 0: The output is low

Bit = 1: The output is high

9.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O
pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that
are selected for other module functions must be set as required by the other
function.

Bit = 0: The port pin is switched to input direction

Bit = 1: The port pin is switched to output direction
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9.2.4 Function Select Registers PxSEL

Port pins are often multiplexed with other peripheral module functions. See the
device-specific data sheet to determine pin functions. Each PxSEL bit is used
to select the pin function − I/O port or peripheral module function.

Bit = 0: I/O Function is selected for the pin

Bit = 1: Peripheral module function is selected for the pin

Setting PxSELx = 1 does not automatically set the pin direction. Other
peripheral module functions may require the PxDIRx bits to be configured
according to the direction needed for the module function. See the pin
schematics in the device-specific datasheet.

;Output ACLK on P2.0 on MSP430F11x1

BIS.B #01h,&P2SEL ; Select ACLK function for pin

BIS.B #01h,&P2DIR ; Set direction to output *Required*

Note: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any P1SELx or P2SELx bit is set, the corresponding pin’s interrupt
function is disabled. Therefore, signals on these pins will not generate P1 or
P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the
peripheral is a latched representation of the signal at the device pin. While
PxSELx=1, the internal input signal follows the signal at the pin. However, if
the PxSELx=0, the input to the peripheral maintains the value of the input
signal at the device pin before the PxSELx bit was reset.
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9.2.5 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the
PxIFG, PxIE, and PxIES registers. All P1 pins source a single interrupt vector,
and all P2 pins source a different single interrupt vector. The PxIFG register
can be tested to determine the source of a P1 or P2 interrupt.

Interrupt Flag Registers P1IFG, P2IFG

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set
when the selected input signal edge occurs at the pin. All PxIFGx interrupt
flags request an interrupt when their corresponding PxIE bit and the GIE bit
are set. Each PxIFG flag must be reset with software. Software can also set
each PxIFG flag, providing a way to generate a software initiated interrupt.

Bit = 0: No interrupt is pending

Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes
set during a Px interrupt service routine, or is set after the RETI instruction of
a Px interrupt service routine is executed, the set PxIFGx flag generates
another interrupt. This ensures that each transition is acknowledged.

Note: PxIFG Flags When Changing PxOUT or PxDIR

Writing to P1OUT, P1DIR, P2OUT, or P2DIR can result in setting the
corresponding P1IFG or P2IFG flags.

Note: Length of I/O Pin Interrupt Event

Any external interrupt event should be at least 1.5 times MCLK or longer, to
ensure that it is accepted and the corresponding interrupt flag is set.
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Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

Bit = 0: The PxIFGx flag is set with a low-to-high transition

Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx

Writing to P1IES, or P2IES can result in setting the corresponding interrupt
flags.

PxIESx PxINx   PxIFGx
  0 → 1      0 May be set
  0 → 1      1 Unchanged
  1 → 0      0 Unchanged
  1 → 0      1 May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

Bit = 0: The interrupt is disabled

Bit = 1: The interrupt is enabled

9.2.6 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left
unconnected on the PC board, to reduce power consumption. The value of the
PxOUT bit is don’t care, since the pin is unconnected. See chapter System
Resets, Interrupts, and Operating Modes for termination unused pins.
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9.3 Digital I/O Registers 

Seven registers are used to configure P1 and P2. Four registers are used to
configure ports P3 - P6. The digital I/O registers are listed in Table 9−1.

Table 9−1.Digital I/O Registers

Port Register Short Form Address Register Type Initial State

P1 Input P1IN 020h Read only −P1

Output P1OUT 021h Read/write Unchanged

Direction P1DIR 022h Read/write Reset with PUC

Interrupt Flag P1IFG 023h Read/write Reset with PUC

Interrupt Edge Select P1IES 024h Read/write Unchanged

Interrupt Enable P1IE 025h Read/write Reset with PUC

Port Select P1SEL 026h Read/write Reset with PUC

P2 Input P2IN 028h Read only −P2

Output P2OUT 029h Read/write Unchanged

Direction P2DIR 02Ah Read/write Reset with PUC

Interrupt Flag P2IFG 02Bh Read/write Reset with PUC

Interrupt Edge Select P2IES 02Ch Read/write Unchanged

Interrupt Enable P2IE 02Dh Read/write Reset with PUC

Port Select P2SEL 02Eh Read/write Reset with PUC

P3 Input P3IN 018h Read only −P3

Output P3OUT 019h Read/write Unchanged

Direction P3DIR 01Ah Read/write Reset with PUC

Port Select P3SEL 01Bh Read/write Reset with PUC

P4 Input P4IN 01Ch Read only −P4

Output P4OUT 01Dh Read/write Unchanged

Direction P4DIR 01Eh Read/write Reset with PUC

Port Select P4SEL 01Fh Read/write Reset with PUC

P5 Input P5IN 030h Read only −P5

Output P5OUT 031h Read/write Unchanged

Direction P5DIR 032h Read/write Reset with PUC

Port Select P5SEL 033h Read/write Reset with PUC

P6 Input P6IN 034h Read only −P6

Output P6OUT 035h Read/write Unchanged

Direction P6DIR 036h Read/write Reset with PUC

Port Select P6SEL 037h Read/write Reset with PUC
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The watchdog timer is a 16-bit timer that can be used as a watchdog or as an
interval timer. This chapter describes the watchdog timer. The watchdog timer
is implemented in all MSP430x1xx devices.
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10.1 Watchdog Timer Introduction

The primary function of the watchdog timer (WDT) module is to perform a
controlled system restart after a software problem occurs. If the selected time
interval expires, a system reset is generated. If the watchdog function is not
needed in an application, the module can be configured as an interval timer
and can generate interrupts at selected time intervals.

Features of the watchdog timer module include:

� Four software-selectable time intervals

� Watchdog mode

� Interval mode

� Access to WDT control register is password protected

� Control of RST/NMI pin function

� Selectable clock source

� Can be stopped to conserve power

The WDT block diagram is shown in Figure 10−1.

Note: Watchdog Timer Powers Up Active

After a PUC, the WDT module is automatically configured in the watchdog
mode with an initial ~32-ms reset interval using the DCOCLK. The user must
setup or halt the WDT prior to the expiration of the initial reset interval.
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Figure 10−1. Watchdog Timer Block Diagram
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10.2 Watchdog Timer Operation

The WDT module can be configured as either a watchdog or interval timer with
the WDTCTL register. The WDTCTL register also contains control bits to
configure the RST/NMI pin. WDTCTL is a 16-bit, password-protected,
read/write register. Any read or write access must use word instructions and
write accesses must include the write password 05Ah in the upper byte. Any
write to WDTCTL with any value other than 05Ah in the upper byte is a security
key violation and triggers a PUC system reset regardless of timer mode. Any
read of WDTCTL reads 069h in the upper byte.

10.2.1 Watchdog Timer Counter

The watchdog timer counter (WDTCNT) is a 16-bit up-counter that is not
directly accessible by software. The WDTCNT is controlled and time intervals
selected through the watchdog timer control register WDTCTL.

The WDTCNT can be sourced from ACLK or SMCLK. The clock source is
selected with the WDTSSEL bit.

10.2.2 Watchdog Mode

After a PUC condition, the WDT module is configured in the watchdog mode
with an initial ~32-ms reset interval using the DCOCLK. The user must setup,
halt, or clear the WDT prior to the expiration of the initial reset interval or
another PUC will be generated. When the WDT is configured to operate in
watchdog mode, either writing to WDTCTL with an incorrect password, or
expiration of the selected time interval triggers a PUC. A PUC resets the WDT
to its default condition and configures the RST/NMI pin to reset mode.

10.2.3 Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can
be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag
is set at the expiration of the selected time interval. A PUC is not generated
in interval timer mode at expiration of the selected timer interval and the
WDTIFG enable bit WDTIE remains unchanged.

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an
interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt
request is serviced, or may be reset by software. The interrupt vector address
in interval timer mode is different from that in watchdog mode.

Note: Modifying the Watchdog Timer

The WDT interval should be changed together with WDTCNTCL = 1 in a
single instruction to avoid an unexpected immediate PUC or interrupt.

The WDT should be halted before changing the clock source to avoid a
possible incorrect interval.
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10.2.4 Watchdog Timer Interrupts

The WDT uses two bits in the SFRs for interrupt control.

� The WDT interrupt flag, WDTIFG, located in IFG1.0

� The WDT interrupt enable, WDTIE, located in IE1.0

When using the WDT in the watchdog mode, the WDTIFG flag sources a reset
vector interrupt. The WDTIFG can be used by the reset interrupt service
routine to determine if the watchdog caused the device to reset. If the flag is
set, then the watchdog timer initiated the reset condition either by timing out
or by a security key violation. If WDTIFG is cleared, the reset was caused by
a different source.

When using the WDT in interval timer mode, the WDTIFG flag is set after the
selected time interval and requests a WDT interval timer interrupt if the WDTIE
and the GIE bits are set. The interval timer interrupt vector is different from the
reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag
is reset automatically when the interrupt is serviced, or can be reset with
software.
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10.2.5 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals
are available in different low-power modes. The requirements of the user’s
application and the type of clocking used determine how the WDT should be
configured. For example, the WDT should not be configured in watchdog
mode with SMCLK as its clock source if the user wants to use low-power mode
3 because SMCLK is not active in LPM3 and the WDT would not function.
When the watchdog timer is not required, the WDTHOLD bit can be used to
hold the WDTCNT, reducing power consumption.

10.2.6 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah
(WDTPW) in the upper byte:

; Periodically clear an active watchdog

MOV #WDTPW+WDTCNTCL,&WDTCTL

;

; Change watchdog timer interval

MOV #WDTPW+WDTCNTL+SSEL,&WDTCTL

;

; Stop the watchdog

MOV #WDTPW+WDTHOLD,&WDTCTL

;

; Change WDT to interval timer mode, clock/8192 interval

MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS0,&WDTCTL
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10.3 Watchdog Timer Registers

The watchdog timer module registers are listed in Table 10−1.

Table 10−1.Watchdog Timer Registers

Register Short Form Register Type Address Initial State

Watchdog timer control register WDTCTL Read/write 0120h 06900h with PUC

SFR interrupt enable register 1 IE1 Read/write 0000h Reset with PUC

SFR interrupt flag register 1 IFG1 Read/write 0002h Reset with PUC†

† WDTIFG is reset with POR
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WDTCTL, Watchdog Timer Register

15 14 13 12 11 10 9 8

Read as 069h
WDTPW, must be written as 05Ah

7 6 5 4 3 2 1 0

WDTHOLD WDTNMIES WDTNMI WDTTMSEL WDTCNTCL WDTSSEL WDTISx

rw−0 rw−0 rw−0 rw−0 r0(w) rw−0 rw−0 rw−0

WDTPW Bits
15-8

Watchdog timer password. Always read as 069h. Must be written as 05Ah, or
a PUC will be generated.

WDTHOLD Bit 7 Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD
= 1 when the WDT is not in use conserves power.
0 Watchdog timer is not stopped
1 Watchdog timer is stopped

WDTNMIES Bit 6 Watchdog timer NMI edge select. This bit selects the interrupt edge for the
NMI interrupt when WDTNMI = 1. Modifying this bit can trigger an NMI. Modify
this bit when WDTNMI = 0 to avoid triggering an accidental NMI.
0 NMI on rising edge
1 NMI on falling edge

WDTNMI Bit 5 Watchdog timer NMI select. This bit selects the function for the RST/NMI pin.
0 Reset function
1 NMI function

WDTTMSEL Bit 4 Watchdog timer mode select
0 Watchdog mode
1 Interval timer mode

WDTCNTCL Bit 3 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value
to 0000h. WDTCNTCL is automatically reset.
0 No action
1 WDTCNT = 0000h

WDTSSEL Bit 2 Watchdog timer clock source select
0 SMCLK
1 ACLK

WDTISx Bits
1-0

Watchdog timer interval select. These bits select the watchdog timer interval
to set the WDTIFG flag and/or generate a PUC.
00 Watchdog clock source /32768
01 Watchdog clock source /8192
10 Watchdog clock source /512
11 Watchdog clock source /64



Watchdog Timer Registers

10-9Watchdog Timer

IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

NMIIE WDTIE

rw−0 rw−0

Bits
7-5

These bits may be used by other modules. See device-specific datasheet.

NMIIE Bit 4 NMI interrupt enable. This bit enables the NMI interrupt. Because other bits
in IE1 may be used for other modules, it is recommended to set or clear this
bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B
instructions.
0 Interrupt not enabled
1 Interrupt enabled

Bits
3-1

These bits may be used by other modules. See device-specific datasheet.

WDTIE Bit 0 Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for
interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in IE1 may be used for other modules, it is recommended
to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B
or CLR.B instructions.
0 Interrupt not enabled
1 Interrupt enabled
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IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

NMIIFG WDTIFG

rw−(0) rw−(0)

Bits
7-5

These bits may be used by other modules. See device-specific datasheet.

NMIIFG Bit 4 NMI interrupt flag. NMIIFG must be reset by software. Because other bits in
IFG1 may be used for other modules, it is recommended to clear NMIIFG by
using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending

Bits
3-1

These bits may be used by other modules. See device-specific datasheet.

WDTIFG Bit 0 Watchdog timer interrupt flag. In watchdog mode, WDTIFG remains set until
reset by software. In interval mode, WDTIFG is reset automatically by
servicing the interrupt, or can be reset by software. Because other bits in IFG1
may be used for other modules, it is recommended to clear WDTIFG by using
BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.
0 No interrupt pending
1 Interrupt pending
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Timer_A is a 16-bit timer/counter with three capture/compare registers. This
chapter describes Timer_A. Timer_A is implemented in all MSP430x1xx
devices.
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11.1 Timer_A Introduction

Timer_A is a 16-bit timer/counter with three capture/compare registers.
Timer_A can support multiple capture/compares, PWM outputs, and interval
timing. Timer_A also has extensive interrupt capabilities. Interrupts may be
generated from the counter on overflow conditions and from each of the
capture/compare registers.

Timer_A features include:

� Asynchronous 16-bit timer/counter with four operating modes

� Selectable and configurable clock source

� Three configurable capture/compare registers

� Configurable outputs with PWM capability

� Asynchronous input and output latching

� Interrupt vector register for fast decoding of all Timer_A interrupts

The block diagram of Timer_A is shown in Figure 11−1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action will not take place.
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Figure 11−1. Timer_A Block Diagram
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11.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and
operation of Timer_A is discussed in the following sections.

11.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TAR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_A Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant
operating conditions.

When the TACLK is asynchronous to the CPU clock, any read from TAR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider

The timer clock TACLK can be sourced from ACLK, SMCLK, or externally via
TACLK or INCLK. The clock source is selected with the TASSELx bits. The
selected clock source may be passed directly to the timer or divided by 2, 4,
or 8, using the IDx bits. The TACLK divider is reset when TACLR is set.
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11.2.2 Starting the Timer

The timer may be started, or restarted in the following ways:

� The timer counts when MCx > 0 and the clock source is active.

� When the timer mode is either up or up/down, the timer may be stopped
by writing 0 to TACCR0. The timer may then be restarted by writing a
nonzero value to TACCR0. In this scenario, the timer starts incrementing
in the up direction from zero.

11.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 11−1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 11−1.Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of
TACCR0

10 Continuous The timer repeatedly counts from zero to 0FFFFh.

11 Up/down The timer repeatedly counts from zero up to the value of
TACCR0 and back down to zero.
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Up Mode

The up mode is used if the timer period must be different from 0FFFFh counts.
The timer repeatedly counts up to the value of compare register TACCR0,
which defines the period, as shown in Figure 11−2. The number of timer counts
in the period is TACCR0+1. When the timer value equals TACCR0 the timer
restarts counting from zero. If up mode is selected when the timer value is
greater than TACCR0, the timer immediately restarts counting from zero.

Figure 11−2. Up Mode

0h

0FFFFh

TACCR0

The TACCR0 CCIFG interrupt flag is set when the timer counts to the TACCR0
value. The TAIFG interrupt flag is set when the timer counts from TACCR0 to
zero. Figure 11−3 shows the flag set cycle.

Figure 11−3. Up Mode Flag Setting
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Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, if the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count
value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.
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Continuous Mode

In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts
from zero as shown in Figure 11−4. The capture/compare register TACCR0
works the same way as the other capture/compare registers.

Figure 11−4. Continuous Mode

0h

0FFFFh

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero.
Figure 11−5 shows the flag set cycle.

Figure 11−5. Continuous Mode Flag Setting
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Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TACCRx register in the
interrupt service routine. Figure 11−6 shows two separate time intervals t0 and
t1 being added to the capture/compare registers. In this usage, the time
interval is controlled by hardware, not software, without impact from interrupt
latency. Up to three independent time intervals or output frequencies can be
generated using all three capture/compare registers.

Figure 11−6. Continuous Mode Time Intervals
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TACCR0a

TACCR0b TACCR0c TACCR0d

t1

t0 t0

TACCR1a

TACCR1b TACCR1c

TACCR1d

t1 t1

t0

Time intervals can be produced with other modes as well, where TACCR0 is
used as the period register. Their handling is more complex since the sum of
the old TACCRx data and the new period can be higher than the TACCR0
value. When the previous TACCRx value plus tx is greater than the TACCR0
data, the TACCR0 value must be subtracted to obtain the correct time interval.
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Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare register TACCR0 and back down to zero,
as shown in Figure 11−7. The period is twice the value in TACCR0.

Figure 11−7. Up/Down Mode

0h

TACCR0

0FFFFh

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TACLR bit must be set to clear the direction. The TACLR bit
also clears the TAR value and the TACLK divider.

In up/down mode, the TACCR0 CCIFG interrupt flag and the TAIFG interrupt
flag are set only once during a period, separated by 1/2 the timer period. The
TACCR0 CCIFG interrupt flag is set when the timer counts from TACCR0−1
to TACCR0, and TAIFG is set when the timer completes counting down from
0001h to 0000h. Figure 11−8 shows the flag set cycle.

Figure 11−8. Up/Down Mode Flag Setting

CCR0−1 CCR0 CCR0−1

Timer Clock

Timer

Set TAIFG

Set TACCR0 CCIFG

CCR0−2 1h 0h

Up/Down
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Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, and counting in the down
direction, the timer continues its descent until it reaches zero. The new period
takes affect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater
than or equal to the old period, or greater than the current count value, the timer
counts up to the new period before counting down. When the timer is counting
in the up direction, and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before
the counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between
output signals (See section Timer_A Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in Figure 11−9 the tdead is:

tdead = ttimer × (TACCR1 − TACCR2)

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

TACCRx Content of capture/compare register x

The TACCRx registers are not buffered. They update immediately when
written to. Therefore, any required dead time will not be maintained
automatically.

Figure 11−9. Output Unit in Up/Down Mode
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Dead Time
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11.2.4 Capture/Compare Blocks

Three identical capture/compare blocks, TACCRx, are present in Timer_A.
Any of the blocks may be used to capture the timer data, or to generate time
intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture occurs:

� The timer value is copied into the TACCRx register

� The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x1xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 11−10.

Figure 11−10.Capture Signal (SCS=1)

n−2 n−1

Timer Clock

Timer

Set TACCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 11−11. COV must
be reset with software.
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Figure 11−11.Capture Cycle

Second
Capture
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Capture Read and No Capture

Capture

Capture ReadCapture
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Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets CCIS1 = 1 and toggles bit CCIS0 to switch the
capture signal between VCC and GND, initiating a capture each time CCIS0
changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TACCTLx ; Setup TACCTLx

XOR #CCIS0,&TACCTLx ; TACCTLx = TAR

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TAR counts to the value in a TACCRx:

� Interrupt flag CCIFG is set

� Internal signal EQUx = 1

� EQUx affects the output according to the output mode

� The input signal CCI is latched into SCCI
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11.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQU0 and EQUx signals.

Output Modes

The output modes are defined by the OUTMODx bits and are described in
Table 11−2. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQU0.

Table 11−2.Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts
to the TACCRx value. It remains set until
a reset of the timer, or until another
output mode is selected and affects the
output.

010 Toggle/Reset The output is toggled when the timer
counts to the TACCRx value. It is reset
when the timer counts to the TACCR0
value.

011 Set/Reset The output is set when the timer counts
to the TACCRx value. It is reset when the
timer counts to the TACCR0 value.

100 Toggle The output is toggled when the timer
counts to the TACCRx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TACCRx value. It remains reset
until another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TACCRx value. It is set
when the timer counts to the TACCR0
value.

111 Reset/Set The output is reset when the timer counts
to the TACCRx value. It is set when the
timer counts to the TACCR0 value.
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Output Example —Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TACCRx value,
and rolls from TACCR0 to zero, depending on the output mode. An example
is shown in Figure 11−12 using TACCR0 and TACCR1.

Figure 11−12.Output Example—Timer in Up Mode
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Output Example —Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and
TACCR0 values, depending on the output mode. An example is shown in
Figure 11−13 using TACCR0 and TACCR1.

Figure 11−13.Output Example—Timer in Continuous Mode
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Output Example —Timer in Up/Down Mode

The OUTx signal changes when the timer equals TACCRx in either count
direction and when the timer equals TACCR0, depending on the output mode.
An example is shown in Figure 11−14 using TACCR0 and TACCR2.

Figure 11−14.Output Example—Timer in Up/Down Mode

0h

0FFFFh

TAIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset
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TAIFG
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EQU0
EQU2 EQU2

EQU0

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7,&TACCTLx ; Set output mode=7

BIC #OUTMODx,&TACCTLx ; Clear unwanted bits
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11.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

� TACCR0 interrupt vector for TACCR0 CCIFG

� TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the
associated TACCRx register. In compare mode, any CCIFG flag is set if TAR
counts to the associated TACCRx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TACCR0 Interrupt

The TACCR0 CCIFG flag has the highest Timer_A interrupt priority and has
a dedicated interrupt vector as shown in Figure 11−15. The TACCR0 CCIFG
flag is automatically reset when the TACCR0 interrupt request is serviced.

Figure 11−15.Capture/Compare TACCR0 Interrupt Flag

D
Set

Q IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and
combined to source a single interrupt vector. The interrupt vector register TAIV
is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register
(see register description). This number can be evaluated or added to the
program counter to automatically enter the appropriate software routine.
Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine
accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TACCR2
CCIFG flag will generate another interrupt.



Timer_A Operation

11-18 Timer_A

TAIV Software Example

The following software example shows the recommended use of TAIV and the
handling overhead. The TAIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

� Capture/compare block TACCR0 11 cycles
� Capture/compare blocks TACCR1, TACCR2 16 cycles
� Timer overflow TAIFG 14 cycles

; Interrupt handler for TACCR0 CCIFG.   Cycles

CCIFG_0_HND

; ... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TAIFG, TACCR1 and TACCR2 CCIFG.

TA_HND ... ; Interrupt latency 6

ADD &TAIV,PC ; Add offset to Jump table �3

RETI ; Vector 0: No interrupt 5

JMP CCIFG_1_HND ; Vector 2: TACCR1 2

JMP CCIFG_2_HND ; Vector 4: TACCR2 2

RETI ; Vector 6: Reserved 5

RETI ; Vector 8: Reserved 5

TAIFG_HND ; Vector 10: TAIFG Flag

... ; Task starts here

RETI 5

CCIFG_2_HND ; Vector 4: TACCR2

... ; Task starts here

RETI ; Back to main program 5

CCIFG_1_HND ; Vector 2: TACCR1

... ; Task starts here

RETI ; Back to main program 5
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11.3 Timer_A Registers

The Timer_A registers are listed in Table 11−3:

Table 11−3.Timer_A Registers

Register Short Form Register Type Address Initial State

Timer_A control TACTL Read/write 0160h Reset with POR

Timer_A counter TAR Read/write 0170h Reset with POR

Timer_A capture/compare control 0 TACCTL0 Read/write 0162h Reset with POR

Timer_A capture/compare 0 TACCR0 Read/write 0172h Reset with POR

Timer_A capture/compare control 1 TACCTL1 Read/write 0164h Reset with POR

Timer_A capture/compare 1 TACCR1 Read/write 0174h Reset with POR

Timer_A capture/compare control 2 TACCTL2 Read/write 0166h Reset with POR

Timer_A capture/compare 2 TACCR2 Read/write 0176h Reset with POR

Timer_A interrupt vector TAIV Read only 012Eh Reset with POR
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TACTL, Timer_A Control Register

15 14 13 12 11 10 9 8

Unused TASSELx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TACLR TAIE TAIFG

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) w−(0) rw−(0) rw−(0)

Unused Bits
15-10

Unused

TASSELx Bits
9-8

Timer_A clock source select
00 TACLK
01 ACLK
10 SMCLK
11 INCLK

IDx Bits
7-6

Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits
5-4

Mode control. Setting MCx = 00h when Timer_A is not in use conserves
power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TACCR0
10 Continuous mode: the timer counts up to 0FFFFh
11 Up/down mode: the timer counts up to TACCR0 then down to 0000h

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the TACLK divider, and the count
direction. The TACLR bit is automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag
0 No interrupt pending
1 Interrupt pending
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TAR, Timer_A Register

15 14 13 12 11 10 9 8

TARx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

TARx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

TARx Bits
15-0

Timer_A register. The TAR register is the count of Timer_A.
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TACCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS SCCI Unused CAP

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−(0) r−(0) rw−(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw−(0) rw−(0) rw−(0) rw−(0) r rw−(0) rw−(0) rw−(0)

CMx Bit
15-14

Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit
13-12

Capture/compare input select. These bits select the TACCRx input signal.
See the device-specific datasheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

SCCI Bit 10 Synchronized capture/compare input. The selected CCI input signal is
latched with the EQUx signal and can be read via this bit

Unused Bit 9 Unused. Read only. Always read as 0.

CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode

OUTMODx Bits
7-5

Output mode. Modes 2, 3, 6, and 7 are not useful for TACCR0 because EQUx
= EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set
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CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TAIVx 0

r0 r0 r0 r0 r−(0) r−(0) r−(0) r0

TAIVx Bits
15-0

Timer_A Interrupt Vector value

TAIV Contents Interrupt Source Interrupt Flag
Interrupt
Priority

00h No interrupt pending −

02h Capture/compare 1 TACCR1 CCIFG Highest

04h Capture/compare 2 TACCR2 CCIFG

06h Reserved −

08h Reserved −

0Ah Timer overflow TAIFG

0Ch Reserved −

0Eh Reserved − Lowest
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Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This
chapter describes Timer_B. Timer_B3 (three capture/compare registers) is
implemented in MSP430x13x and MSP430x15x devices. Timer_B7 (seven
capture/compare registers) is implemented in MSP430x14x and
MSP430x16x devices.
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12.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare
registers. Timer_B can support multiple capture/compares, PWM outputs, and
interval timing. Timer_B also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of
the capture/compare registers.

Timer_B features include :

� Asynchronous 16-bit timer/counter with four operating modes and four
selectable lengths

� Selectable and configurable clock source

� Three or seven configurable capture/compare registers

� Configurable outputs with PWM capability

� Double-buffered compare latches with synchronized loading

� Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 12−1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the
process of counting for the action to take place. If a particular value is directly
written to the counter, then an associated action does not take place.

12.1.1 Similarities and Differences From Timer_A

Timer_B is identical to Timer_A with the following exceptions:

�  The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.

� Timer_B TBCCRx registers are double-buffered and can be grouped.

� All Timer_B outputs can be put into a high-impedance state.

� The SCCI bit function is not implemented in Timer_B.
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Figure 12−1. Timer_B Block Diagram
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12.2 Timer_B Operation

The Timer_B module is configured with user software. The setup and
operation of Timer_B is discussed in the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBR, increments or decrements (depending
on mode of operation) with each rising edge of the clock signal. TBR can be
read or written with software. Additionally, the timer can generate an interrupt
when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the
clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with
exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant
operating conditions.

When the TBCLK is asynchronous to the CPU clock, any read from TBR
should occur while the timer is not operating or the results may be
unpredictable. Alternatively, the timer may be read multiple times while
operating, and a majority vote taken in software to determine the correct
reading. Any write to TBR will take effect immediately.

TBR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the
CNTLx bits. The maximum count value, TBR(max), for the selectable lengths
is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data written to the TBR
register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

The timer clock TBCLK can be sourced from ACLK, SMCLK, or externally via
TBCLK or INCLK. The clock source is selected with the TBSSELx bits. The
selected clock source may be passed directly to the timer or divided by 2,4,
or 8, using the IDx bits. The TBCLK divider is reset when TBCLR is set.
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12.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

� The timer counts when MCx > 0 and the clock source is active.

� When the timer mode is either up or up/down, the timer may be stopped
by loading 0 to TBCL0. The timer may then be restarted by loading a
nonzero value to TBCL0. In this scenario, the timer starts incrementing in
the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 12−1: stop, up,
continuous, and up/down. The operating mode is selected with the MCx bits.

Table 12−1.Timer Modes

MCx Mode Description

00 Stop The timer is halted.

01 Up The timer repeatedly counts from zero to the value of
compare register TBCL0.

10 Continuous The timer repeatedly counts from zero to the value se-
lected by the TBCNTLx bits.

11 Up/down The timer repeatedly counts from zero up to the value of
TBCL0 and then back down to zero.
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Up Mode

The up mode is used if the timer period must be different from TBR(max) counts.
The timer repeatedly counts up to the value of compare latch TBCL0, which
defines the period, as shown in Figure 12−2. The number of timer counts in
the period is TBCL0+1. When the timer value equals TBCL0 the timer restarts
counting from zero. If up mode is selected when the timer value is greater than
TBCL0, the timer immediately restarts counting from zero.

Figure 12−2. Up Mode

0h

TBR(max)

TBCL0

The TBCCR0 CCIFG interrupt flag is set when the timer counts to the TBCL0
value. The TBIFG interrupt flag is set when the timer counts from TBCL0 to
zero. Figure 11−3 shows the flag set cycle.

Figure 12−3. Up Mode Flag Setting

TBCL0−1 TBCL0 0h

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

1h TBCL0−1 TBCL0 0h

Changing the Period Register TBCL0

When changing TBCL0 while the timer is running and when the TBCL0 load
mode is immediate, if the new period is greater than or equal to the old period,
or greater than the current count value, the timer counts up to the new period.
If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.
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Continuous Mode

In continuous mode the timer repeatedly counts up to TBR(max) and restarts
from zero as shown in Figure 12−4. The compare latch TBCL0 works the same
way as the other capture/compare registers.

Figure 12−4. Continuous Mode

0h

TBR(max)

The TBIFG interrupt flag is set when the timer counts from TBR(max) to zero.
Figure 12−5 shows the flag set cycle.

Figure 12−5. Continuous Mode Flag Setting
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Timer Clock
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1h TBR (max) 0hTBR (max)−1
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Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and
output frequencies. Each time an interval is completed, an interrupt is
generated. The next time interval is added to the TBCLx latch in the interrupt
service routine. Figure 12−6 shows two separate time intervals t0 and t1 being
added to the capture/compare registers. The time interval is controlled by
hardware, not software, without impact from interrupt latency. Up to three
(Timer_B3) or 7 (Timer_B7) independent time intervals or output frequencies
can be generated using capture/compare registers.

Figure 12−6. Continuous Mode Time Intervals

0h

EQU0 Interrupt

TBCL0a

TBCL0b TBCL0c TBCL0d

t1

t0 t0

TBCL1a

TBCL1b TBCL1c

TBCL1d

t1 t1

t0

EQU1 Interrupt

TBR(max)

Time intervals can be produced with other modes as well, where TBCL0 is
used as the period register. Their handling is more complex since the sum of
the old TBCLx data and the new period can be higher than the TBCL0 value.
When the sum of the previous TBCLx value plus tx is greater than the TBCL0
data, the old TBCL0 value must be subtracted to obtain the correct time
interval.
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Up/Down Mode

The up/down mode is used if the timer period must be different from TBR(max)
counts, and if symmetrical pulse generation is needed. The timer repeatedly
counts up to the value of compare latch TBCL0, and back down to zero, as
shown in Figure 12−7. The period is twice the value in TBCL0.

Note: TBCL0  > TBR(max)

If TBCL0 > TBR(max), the counter operates as if it were configured for
continuous mode. It does not count down from TBR(max) to zero.

Figure 12−7. Up/Down Mode

0h

TBCL0

The count direction is latched. This allows the timer to be stopped and then
restarted in the same direction it was counting before it was stopped. If this is
not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit
also clears the TBR value and the TBCLK divider.

In up/down mode, the TBCCR0 CCIFG interrupt flag and the TBIFG interrupt
flag are set only once during the period, separated by 1/2 the timer period. The
TBCCR0 CCIFG interrupt flag is set when the timer counts from TBCL0−1 to
TBCL0, and TBIFG is set when the timer completes counting down from 0001h
to 0000h. Figure 12−8 shows the flag set cycle.

Figure 12−8. Up/Down Mode Flag Setting

TBCL0−1 TBCL0 TBCL0−1

Timer Clock

Timer

Set TBIFG

Set TBCCR0 CCIFG

TBCL0−2 1h 0h 1h

Up/Down
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Changing the Value of Period Register TBCL0

When changing TBCL0 while the timer is running, and counting in the down
direction, and when the TBCL0 load mode is immediate, the timer continues
its descent until it reaches zero. The new period takes effect after the counter
counts down to zero.

If the timer is counting in the up direction when the new period is latched into
TBCL0, and the new period is greater than or equal to the old period, or greater
than the current count value, the timer counts up to the new period before
counting down. When the timer is counting in the up direction, and the new
period is less than the current count value when TBCL0 is loaded, the timer
begins counting down. However, one additional count may occur before the
counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between
output signals (see section Timer_B Output Unit). For example, to avoid
overload conditions, two outputs driving an H-bridge must never be in a high
state simultaneously. In the example shown in  Figure 12−9 the tdead is:

tdead = ttimer × (TBCL1 − TBCL3)

With: tdead Time during which both outputs need to be inactive

ttimer Cycle time of the timer clock

TBCLx Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead
times.

Figure 12−9. Output Unit in Up/Down Mode

TBIFG

0h

TBR(max)

Output Mode 2: Toggle/Reset

Output Mode 6: Toggle/Set

TBCL0

TBCL1

EQU1
TBIFG Interrupt EventsEQU1

EQU0
EQU1 EQU1

EQU0

TBCL3

EQU3 EQU3EQU3 EQU3

Dead Time
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12.2.4 Capture/Compare Blocks

Three or seven identical capture/compare blocks, TBCCRx, are present in
Timer_B. Any of the blocks may be used to capture the timer data or to
generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record
time events. It can be used for speed computations or time measurements.
The capture inputs CCIxA and CCIxB are connected to external pins or internal
signals and are selected with the CCISx bits. The CMx bits select the capture
edge of the input signal as rising, falling, or both. A capture occurs on the
selected edge of the input signal. If a capture is performed:

� The timer value is copied into the TBCCRx register

� The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x1xx
family devices may have different signals connected to CCIxA and CCIxB.
Refer to the device-specific datasheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race
condition. Setting the SCS bit will synchronize the capture with the next timer
clock. Setting the SCS bit to synchronize the capture signal with the timer clock
is recommended. This is illustrated in Figure 12−10.

Figure 12−10. Capture Signal (SCS=1)

n−2 n−1

Timer Clock

Timer

Set TBCCRx CCIFG

n+1 n+3 n+4

CCI

Capture

n+2n

Overflow logic is provided in each capture/compare register to indicate if a
second capture was performed before the value from the first capture was
read. Bit COV is set when this occurs as shown in Figure 12−11. COV must
be reset with software.
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Figure 12−11.Capture Cycle

Second
Capture
Taken

COV = 1

Capture
Taken

No
Capture
Taken

Read
Taken

Capture

Clear Bit COV

in Register TBCCTLx

Idle

Idle

Capture

Capture Read and No Capture

Capture

Capture ReadCapture

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on
both edges. Software then sets bit CCIS1=1 and toggles bit CCIS0 to switch
the capture signal between VCC and GND, initiating a capture each time
CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TBCCTLx ; Setup TBCCTLx

XOR #CCIS0,&TBCCTLx ; TBCCTLx = TBR

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to
generate PWM output signals or interrupts at specific time intervals. When
TBR counts to the value in a TBCLx:

� Interrupt flag CCIFG is set

� Internal signal EQUx = 1

� EQUx affects the output according to the output mode
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Compare Latch TBCLx

The TBCCRx compare latch, TBCLx, holds the data for the comparison to the
timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered
compare latch gives the user control over when a compare period updates.
The user cannot directly access TBCLx. Compare data is written to each
TBCCRx and automatically transferred to TBCLx. The timing of the transfer
from TBCCRx to TBCLx is user-selectable with the CLLDx bits as described
in Table 12−2.

Table 12−2.TBCLx Load Events

CLLDx Description

00 New data is transferred from TBCCRx to TBCLx immediately when
TBCCRx is written to.

01 New data is transferred from TBCCRx to TBCLx when TBR counts to 0

10 New data is transferred from TBCCRx to TBCLx when TBR counts to 0
for up and continuous modes. New data is transferred to from TBCCRx
to TBCLx when TBR counts to the old TBCL0 value or to 0 for up/down
mode

11 New data is transferred from TBCCRx to TBCLx when TBR
counts to the old TBCLx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates
with the TBCLGRPx bits. When using groups, the CLLDx bits of the lowest
numbered TBCCRx in the group determine the load event for each compare
latch of the group, except when TBCLGRP = 3, as shown in Table 12−3. The
CLLDx bits of the controlling TBCCRx must not be set to zero. When the
CLLDx bits of the controlling TBCCRx are set to zero, all compare latches
update immediately when their corresponding TBCCRx is written - no
compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped.
First, all TBCCRx registers of the group must be updated, even when new
TBCCRx data = old TBCCRx data. Second, the load event must occur.

Table 12−3.Compare Latch Operating Modes

TBCLGRPx Grouping Update Control

00 None Individual

01 TBCL1+TBCL2
TBCL3+TBCL4
TBCL5+TBCL6

TBCCR1
TBCCR3
TBCCR5

10 TBCL1+TBCL2+TBCL3
TBCL4+TBCL5+TBCL6

TBCCR1
TBCCR4

11 TBCL0+TBCL1+TBCL2+
TBCL3+TBCL4+TBCL5+TBCL6

TBCCR1
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12.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used
to generate output signals such as PWM signals. Each output unit has eight
operating modes that generate signals based on the EQU0 and EQUx signals.
The TBOUTH pin function can be used to put all Timer_B outputs into a
high-impedance state. When the TBOUTH pin function is selected for the pin,
and when the pin is pulled high, all Timer_B outputs are in a high-impedance
state.

Output Modes

The output modes are defined by the OUTMODx bits and are described in
Table 12−4. The OUTx signal is changed with the rising edge of the timer clock
for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for
output unit 0 because EQUx = EQU0.

Table 12−4.Output Modes

OUTMODx Mode Description

000 Output The output signal OUTx is defined by the
OUTx bit. The OUTx signal updates
immediately when OUTx is updated.

001 Set The output is set when the timer counts
to the TBCLx value. It remains set until a
reset of the timer, or until another output
mode is selected and affects the output.

010 Toggle/Reset The output is toggled when the timer
counts to the TBCLx value. It is reset
when the timer counts to the TBCL0
value.

011 Set/Reset The output is set when the timer counts
to the TBCLx value. It is reset when the
timer counts to the TBCL0 value.

100 Toggle The output is toggled when the timer
counts to the TBCLx value. The output
period is double the timer period.

101 Reset The output is reset when the timer counts
to the TBCLx value. It remains reset until
another output mode is selected and
affects the output.

110 Toggle/Set The output is toggled when the timer
counts to the TBCLx value. It is set when
the timer counts to the TBCL0 value.

111 Reset/Set The output is reset when the timer counts
to the TBCLx value. It is set when the
timer counts to the TBCL0 value.
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Output Example—Timer in Up Mode

The OUTx signal is changed when the timer counts up to the TBCLx value, and
rolls from TBCL0 to zero, depending on the output mode. An example is shown
in Figure 12−12 using TBCL0 and TBCL1.

Figure 12−12. Output Example—Timer in Up Mode

0h

TBR(max)

EQU0
TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 EQU0
TBIFG

EQU1 EQU0
TBIFG

Interrupt Events
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Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TBCLx and TBCL0
values, depending on the output mode, An example is shown in Figure 12−13
using TBCL0 and TBCL1.

Figure 12−13. Output Example—Timer in Continuous Mode

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL1

EQU1 TBIFG EQU1 EQU0 Interrupt EventsEQU0
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Output Example − Timer in Up/Down Mode

The OUTx signal changes when the timer equals TBCLx in either count
direction and when the timer equals TBCL0, depending on the output mode.
An example is shown in Figure 12−14 using TBCL0 and TBCL3.

Figure 12−14. Output Example—Timer in Up/Down Mode

0h

TBR(max)

TBIFG

Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TBCL0

TBCL3

EQU3
TBIFG

Interrupt Events
EQU3

EQU0
EQU3 EQU3

EQU0

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should
remain set during the transition, unless switching to mode 0. Otherwise,
output glitching can occur because a NOR gate decodes output mode 0. A
safe method for switching between output modes is to use output mode 7 as
a transition state:

BIS #OUTMOD_7,&TBCCTLx ; Set output mode=7

BIC #OUTMODx,&TBCCTLx ; Clear unwanted bits
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12.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:

� TBCCR0 interrupt vector for TBCCR0 CCIFG

� TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the
associated TBCCRx register. In compare mode, any CCIFG flag is set when
TBR counts to the associated TBCLx value. Software may also set or clear any
CCIFG flag. All CCIFG flags request an interrupt when their corresponding
CCIE bit and the GIE bit are set.

TBCCR0 Interrupt Vector

The TBCCR0 CCIFG flag has the highest Timer_B interrupt priority and has
a dedicated interrupt vector as shown in Figure 12−15. The TBCCR0 CCIFG
flag is automatically reset when the TBCCR0 interrupt request is serviced.

Figure 12−15. Capture/Compare TBCCR0 Interrupt Flag

D
Set

Q IRQ, Interrupt Service Requested

Reset
Timer Clock

POR

CAP
EQU0

Capture

IRACC, Interrupt Request Accepted

CCIE

TBIV, Interrupt Vector Generator

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCR0 CCIFG) are
prioritized and combined to source a single interrupt vector. The interrupt
vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCR0 CCIFG) generates
a number in the TBIV register (see register description). This number can be
evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled Timer_B interrupts do not affect the
TBIV value.

Any access, read or write, of the TBIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt. For example, if the
TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the TBCCR2
CCIFG flag will generate another interrupt.
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TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the
handling overhead. The TBIV value is added to the PC to automatically jump
to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for
each instruction. The software overhead for different interrupt sources
includes interrupt latency and return-from-interrupt cycles, but not the task
handling itself. The latencies are:

� Capture/compare block CCR0 11 cycles
� Capture/compare blocks CCR1 to CCR6 16 cycles
� Timer overflow TBIFG 14 cycles

The following software example shows the recommended use of TBIV for
Timer_B3.

; Interrupt handler for TBCCR0 CCIFG.   Cycles

CCIFG_0_HND

... ; Start of handler Interrupt latency 6

RETI 5

; Interrupt handler for TBIFG, TBCCR1 and TBCCR2 CCIFG.

TB_HND ... ; Interrupt latency 6

ADD &TBIV,PC ; Add offset to Jump table �3

RETI ; Vector  0: No interrupt 5

JMP CCIFG_1_HND ; Vector  2: Module 1 2

JMP CCIFG_2_HND ; Vector  4: Module 2 2

RETI ; Vector  6

RETI ; Vector  8

RETI ; Vector 10

RETI ; Vector 12

TBIFG_HND ; Vector 14: TIMOV Flag

... ; Task starts here

RETI 5

CCIFG_2_HND ; Vector 4: Module 2

... ; Task starts here

RETI ; Back to main program 5

; The Module 1 handler shows a way to look if any other

; interrupt is pending: 5 cycles have to be spent, but

; 9 cycles may be saved if another interrupt is pending

CCIFG_1_HND ; Vector 6: Module 3

... ; Task starts here

JMP TB_HND ; Look for pending ints 2
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12.3 Timer_B Registers

The Timer_B registers are listed in Table 12−5:

Table 12−5.Timer_B Registers

Register Short Form Register Type Address Initial State

Timer_B control TBCTL Read/write 0180h Reset with POR

Timer_B counter TBR Read/write 0190h Reset with POR

Timer_B capture/compare control 0 TBCCTL0 Read/write 0182h Reset with POR

Timer_B capture/compare 0 TBCCR0 Read/write 0192h Reset with POR

Timer_B capture/compare control 1 TBCCTL1 Read/write 0184h Reset with POR

Timer_B capture/compare 1 TBCCR1 Read/write 0194h Reset with POR

Timer_B capture/compare control 2 TBCCTL2 Read/write 0186h Reset with POR

Timer_B capture/compare 2 TBCCR2 Read/write 0196h Reset with POR

Timer_B capture/compare control 3 TBCCTL3 Read/write 0188h Reset with POR

Timer_B capture/compare 3 TBCCR3 Read/write 0198h Reset with POR

Timer_B capture/compare control 4 TBCCTL4 Read/write 018Ah Reset with POR

Timer_B capture/compare 4 TBCCR4 Read/write 019Ah Reset with POR

Timer_B capture/compare control 5 TBCCTL5 Read/write 018Ch Reset with POR

Timer_B capture/compare 5 TBCCR5 Read/write 019Ch Reset with POR

Timer_B capture/compare control 6 TBCCTL6 Read/write 018Eh Reset with POR

Timer_B capture/compare 6 TBCCR6 Read/write 019Eh Reset with POR

Timer_B Interrupt Vector TBIV Read only 011Eh Reset with POR
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Timer_B Control Register TBCTL

15 14 13 12 11 10 9 8

Unused TBCLGRPx CNTLx Unused TBSSELx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

IDx MCx Unused TBCLR TBIE TBIFG

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) w−(0) rw−(0) rw−(0)

Unused Bit 15 Unused

TBCLGRP Bit
14-13

TBCLx group
00 Each TBCLx latch loads independently
01 TBCL1+TBCL2   (TBCCR1 CLLDx bits control the update)

TBCL3+TBCL4   (TBCCR3 CLLDx bits control the update)
TBCL5+TBCL6   (TBCCR5 CLLDx bits control the update)
TBCL0 independent

10 TBCL1+TBCL2+TBCL3   (TBCCR1 CLLDx bits control the update)
TBCL4+TBCL5+TBCL6   (TBCCR4 CLLDx bits control the update)
TBCL0 independent

11 TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6
(TBCCR1 CLLDx bits control the update)

CNTLx Bits
12-11

Counter Length
00 16-bit, TBR(max) = 0FFFFh
01 12-bit, TBR(max) = 0FFFh
10 10-bit, TBR(max) = 03FFh
11 8-bit, TBR(max) = 0FFh

Unused Bit 10 Unused

TBSSELx Bits
9-8

Timer_B clock source select.
00 TBCLK
01 ACLK
10 SMCLK
11 Inverted TBCLK

IDx Bits
7-6

Input divider. These bits select the divider for the input clock.
00 /1
01 /2
10 /4
11 /8

MCx Bits
5-4

Mode control. Setting MCx = 00h when Timer_B is not in use conserves
power.
00 Stop mode: the timer is halted
01 Up mode: the timer counts up to TBCL0
10 Continuous mode: the timer counts up to the value set by TBCNTLx
11 Up/down mode: the timer counts up to TBCL0 and down to 0000h



Timer_B Registers

12-22 Timer_B

Unused Bit 3 Unused

TBCLR Bit 2 Timer_B clear. Setting this bit resets TBR, the TBCLK divider, and the count
direction. The TBCLR bit is automatically reset and is always read as zero.

TBIE Bit 1 Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0 Interrupt disabled
1 Interrupt enabled

TBIFG Bit 0 Timer_B interrupt flag.
0 No interrupt pending
1 Interrupt pending

TBR, Timer_B Register

15 14 13 12 11 10 9 8

TBRx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

TBRx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

TBRx Bits
15-0

Timer_B register. The TBR register is the count of Timer_B.
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TBCCTLx, Capture/Compare Control Register

15 14 13 12 11 10 9 8

CMx CCISx SCS CLLDx CAP

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−(0) rw−(0)

7 6 5 4 3 2 1 0

OUTMODx CCIE CCI OUT COV CCIFG

rw−(0) rw−(0) rw−(0) rw−(0) r rw−(0) rw−(0) rw−(0)

CMx Bit
15-14

Capture mode
00 No capture
01 Capture on rising edge
10 Capture on falling edge
11 Capture on both rising and falling edges

CCISx Bit
13-12

Capture/compare input select. These bits select the TBCCRx input signal.
See the device-specific datasheet for specific signal connections.
00 CCIxA
01 CCIxB
10 GND
11 VCC

SCS Bit 11 Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0 Asynchronous capture
1 Synchronous capture

CLLDx Bit
10-9

Compare latch load. These bits select the compare latch load event.
00 TBCLx loads on write to TBCCRx
01 TBCLx loads when TBR counts to 0
10 TBCLx loads when TBR counts to 0 (up or continuous mode)

TBCLx loads when TBR counts to TBCL0 or to 0 (up/down mode)
11 TBCLx loads when TBR counts to TBCLx

CAP Bit 8 Capture mode
0 Compare mode
1 Capture mode

OUTMODx Bits
7-5

Output mode. Modes 2, 3, 6, and 7 are not useful for TBCL0 because EQUx
= EQU0.
000 OUT bit value
001 Set
010 Toggle/reset
011 Set/reset
100 Toggle
101 Reset
110 Toggle/set
111 Reset/set
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CCIE Bit 4 Capture/compare interrupt enable. This bit enables the interrupt request of
the corresponding CCIFG flag.
0 Interrupt disabled
1 Interrupt enabled

CCI Bit 3 Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.
0 Output low
1 Output high

COV Bit 1 Capture overflow. This bit indicates a capture overflow occurred. COV must
be reset with software.
0 No capture overflow occurred
1 Capture overflow occurred

CCIFG Bit 0 Capture/compare interrupt flag
0 No interrupt pending
1 Interrupt pending
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TBIV, Timer_B Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 0 TBIVx 0

r0 r0 r0 r0 r−(0) r−(0) r−(0) r0

TBIVx Bits
15-0

Timer_B interrupt vector value

TBIV Contents Interrupt Source Interrupt Flag
Interrupt
Priority

00h No interrupt pending −

02h Capture/compare 1 TBCCR1 CCIFG Highest

04h Capture/compare 2 TBCCR2 CCIFG

06h Capture/compare 3† TBCCR3 CCIFG

08h Capture/compare 4† TBCCR4 CCIFG

0Ah Capture/compare 5† TBCCR5 CCIFG

0Ch Capture/compare 6† TBCCR6 CCIFG

0Eh Timer overflow TBIFG Lowest
† MSP430x14x, MSP430x16x devices only
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The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports two serial modes with one hardware module.
This chapter discusses the operation of the asynchronous UART mode.
USART0 is implemented on the MSP430x12xx, MSP430x13xx, and
MSP430x15x devices. In addition to USART0, the MSP430x14x and
MSP430x16x devices implement a second identical USART module,
USART1.
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13-2 USART Peripheral Interface, UART Mode

13.1 USART Introduction: UART Mode

In asynchronous mode, the USART connects the MSP430 to an external
system via two external pins, URXD and UTXD. UART mode is selected when
the SYNC bit is cleared.

UART mode features include:

� 7- or 8-bit data with odd, even, or non-parity

� Independent transmit and receive shift registers

� Separate transmit and receive buffer registers

� LSB-first data transmit and receive

� Built-in idle-line and address-bit communication protocols for
multiprocessor systems

� Receiver start-edge detection for auto-wake up from LPMx modes

� Programmable baud rate with modulation for fractional baud rate support

� Status flags for error detection and suppression and address detection

� Independent interrupt capability for receive and transmit

Figure 13−1 shows the USART when configured for UART mode.
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Figure 13−1. USART Block Diagram: UART Mode
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13.2 USART Operation: UART Mode

In UART mode, the USART transmits and receives characters at a bit rate
asynchronous to another device. Timing for each character is based on the
selected baud rate of the USART. The transmit and receive functions use the
same baud rate frequency.

13.2.1 USART Initialization and Reset

The USART is reset by a PUC or by setting the SWRST bit. After a PUC, the
SWRST bit is automatically set, keeping the USART in a reset condition. When
set, the SWRST bit resets the URXIEx, UTXIEx, URXIFGx, RXWAKE,
TXWAKE, RXERR, BRK, PE, OE, and FE bits and sets the UTXIFGx and
TXEPT bits. The receive and transmit enable flags, URXEx and UTXEx, are
not altered by SWRST. Clearing SWRST releases the USART for operation.
See also chapter USART Module, I2C mode for USART0 when reconfiguring
from I2C mode to UART mode.

Note: Initializing or Re-Configuring the USART Module

The required USART initialization/re-configuration process is:

1) Set SWRST (BIS.B  #SWRST,&UxCTL)

2) Initialize all USART registers with SWRST = 1 (including UxCTL)

3) Enable USART module via the MEx SFRs (URXEx and/or UTXEx)

4) Clear SWRST via software (BIC.B  #SWRST,&UxCTL)

5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEx)

Failure to follow this process may result in unpredictable USART behavior.

13.2.2 Character Format

The UART character format, shown in Figure 13−2, consists of a start bit,
seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit
mode), and one or two stop bits. The bit period is defined by the selected clock
source and setup of the baud rate registers.

Figure 13−2. Character Format

[Parity Bit, PENA = 1]

[Address Bit, MM = 1]

Mark

Space
D0 D6 D7 AD PA SP SP

[Optional Bit, Condition]

[2nd Stop Bit, SP = 1]

[8th Data Bit, CHAR = 1]

ST
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13.2.3 Asynchronous Communication Formats

When two devices communicate asynchronously, the idle-line format is used
for the protocol. When three or more devices communicate, the USART
supports the idle-line and address-bit multiprocessor communication formats.

Idle-Line Multiprocessor Format

When MM = 0, the idle-line multiprocessor format is selected. Blocks of data
are separated by an idle time on the transmit or receive lines as shown in
Figure 13−3. An idle receive line is detected when 10 or more continuous ones
(marks) are received after the first stop bit of a character. When two stop bits
are used for the idle line the second stop bit is counted as the first mark bit of
the idle period.

The first character received after an idle period is an address character. The
RXWAKE bit is used as an address tag for each block of characters. In the
idle-line multiprocessor format, this bit is set when a received character is an
address and is transferred to UxRXBUF.

Figure 13−3. Idle-Line Format

ST Address SP ST Data SP ST Data SP

Blocks of
Characters

Idle Periods of 10 Bits or More

UTXDx/URXDx Expanded

UTXDx/URXDx

First Character Within Block
Is Address. It Follows Idle
Period of 10 Bits or More

Character Within Block

Idle Period Less Than 10 Bits

Character Within Block

UTXDx/URXDx
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The URXWIE bit is used to control data reception in the idle-line
multiprocessor format. When the URXWIE bit is set, all non-address
characters are assembled but not transferred into the UxRXBUF, and
interrupts are not generated. When an address character is received, the
receiver is temporarily activated to transfer the character to UxRXBUF and
sets the URXIFGx interrupt flag. Any applicable error flag is also set. The user
can then validate the received address.

If an address is received, user software can validate the address and must
reset URXWIE to continue receiving data. If URXWIE remains set, only
address characters will be received. The URXWIE bit is not modified by the
USART hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle
period can be generated by the USART to generate address character
identifiers on UTXDx. The wake-up temporary (WUT) flag is an internal flag
double-buffered with the user-accessible TXWAKE bit. When the transmitter
is loaded from UxTXBUF, WUT is also loaded from TXWAKE resetting the
TXWAKE bit.

The following procedure sends out an idle frame to indicate an address
character will follow:

1) Set TXWAKE, then write any character to UxTXBUF. UxTXBUF must be
ready for new data (UTXIFGx = 1).

The TXWAKE value is shifted to WUT and the contents of UxTXBUF are
shifted to the transmit shift register when the shift register is ready for new
data. This sets WUT, which suppresses the start, data, and parity bits of a
normal transmission, then transmits an idle period of exactly 11 bits. When
two stop bits are used for the idle line, the second stop bit is counted as the
first mark bit of the idle period. TXWAKE is reset automatically.

2) Write desired address character to UxTXBUF. UxTXBUF must be ready
for new data (UTXIFGx = 1).

The new character representing the specified address is shifted out
following the address-identifying idle period on UTXDx. Writing the first
“don’t care” character to UxTXBUF is necessary in order to shift the
TXWAKE bit to WUT and generate an idle-line condition. This data is
discarded and does not appear on UTXDx.
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Address -Bit Multiprocessor Format

When MM = 1, the address-bit multiprocessor format is selected. Each
processed character contains an extra bit used as an address indicator shown
in Figure 13−4. The first character in a block of characters carries a set
address bit which indicates that the character is an address. The USART
RXWAKE bit is set when a received character is a valid address character and
is transferred to UxRXBUF.

The URXWIE bit is used to control data reception in the address-bit
multiprocessor format. If URXWIE is set, data characters (address bit = 0) are
assembled by the receiver but are not transferred to UxRXBUF and no
interrupts are generated. When a character containing a set address bit is
received, the receiver is temporarily activated to transfer the character to
UxRXBUF and set URXIFGx. All applicable error status flags are also set.

If an address is received, user software must reset URXWIE to continue
receiving data. If URXWIE remains set, only address characters (address bit
= 1) will be received. The URXWIE bit is not modified by the USART hardware
automatically.

Figure 13−4.  Address-Bit Multiprocessor Format

ST Address SP ST Data SP ST Data SP

Blocks of
Characters

Idle Periods of No Significance

UTXDx/URXDx
Expanded

UTXDx/URXDx

First Character Within Block
Is an Address. AD Bit Is 1

AD Bit Is 0 for
Data Within Block.

Idle Time Is of No Significance

UTXDx/URXDx
1 0 0

For address transmission in address-bit multiprocessor mode, the address bit
of a character can be controlled by writing to the TXWAKE bit. The value of the
TXWAKE bit is loaded into the address bit of the character transferred from
UxTXBUF to the transmit shift register, automatically clearing the TXWAKE bit.
TXWAKE must not be cleared by software. It is cleared by USART hardware
after it is transferred to WUT or by setting SWRST.
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Automatic Error Detection

Glitch suppression prevents the USART from being accidentally started. Any
low-level on URXDx shorter than the deglitch time tτ (approximately 300 ns)
will be ignored. See the device-specific datasheet for parameters.

When a low period on URXDx exceeds tτ a majority vote is taken for the start
bit. If the majority vote fails to detect a valid start bit the USART halts character
reception and waits for the next low period on URXDx. The majority vote is also
used for each bit in a character to prevent bit errors.

The USART module automatically detects framing errors, parity errors,
overrun errors, and break conditions when receiving characters. The bits FE,
PE, OE, and BRK are set when their respective condition is detected. When
any of these error flags are set, RXERR is also set. The error conditions are
described in Table 13−1.

Table 13−1.Receive Error Conditions

Error Condition Description

Framing error

A framing error occurs when a low stop bit is
detected. When two stop bits are used, only the first
stop bit is checked for framing error. When a
framing error is detected, the FE bit is set.

Parity error

A parity error is a mismatch between the number of
1s in a character and the value of the parity bit.
When an address bit is included in the character, it
is included in the parity calculation. When a parity
error is detected, the PE bit is set.

Receive overrun error
An overrun error occurs when a character is loaded
into UxRXBUF before the prior character has been
read. When an overrun occurs, the OE bit is set.

Break condition

A break condition is a period of 10 or more low bits
received on URXDx after a missing stop bit. When a
break condition is detected, the BRK bit is set. A
break condition can also set the interrupt flag
URXIFGx.

When URXEIE = 0 and a framing error, parity error, or break condition is
detected, no character is received into UxRXBUF. When URXEIE = 1,
characters are received into UxRXBUF and any applicable error bit is set.

When any of the FE, PE, OE, BRK, or RXERR bits is set, the bit remains set
until user software resets it or UxRXBUF is read.
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13.2.4 USART Receive Enable

The receive enable bit, URXEx, enables or disables data reception on URXDx
as shown in Figure 13−5. Disabling the USART receiver stops the receive
operation following completion of any character currently being received or
immediately if no receive operation is active. The receive-data buffer,
UxRXBUF, contains the character moved from the RX shift register after the
character is received.

Figure 13−5. State Diagram of Receiver Enable

Idle State
(Receiver
Enabled)

Receive
Disable

Receiver
Collects

Character

URXEx = 0
No Valid Start Bit

Not Completed

URXEx = 1

URXEx = 0

URXEx = 1
Valid Start Bit

Handle Interrupt
Conditions

Character
ReceivedURXEx = 1

URXEx = 0

Note: Re-Enabling the Receiver (Setting URXEx): UART Mode

When the receiver is disabled (URXEx = 0), re-enabling the receiver (URXEx
= 1) is asynchronous to any data stream that may be present on URXDx at
the time. Synchronization can be performed by testing for an idle line
condition before receiving a valid character (see URXWIE).
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13.2.5 USART Transmit Enable

When UTXEx is set, the UART transmitter is enabled. Transmission is initiated
by writing data to UxTXBUF. The data is then moved to the transmit shift
register on the next BITCLK after the TX shift register is empty, and
transmission begins. This process is shown in Figure 13−6.

When the UTXEx bit is reset the transmitter is stopped. Any data moved to
UxTXBUF and any active transmission of data currently in the transmit shift
register prior to clearing UTXEx will continue until all data transmission is
completed.

Figure 13−6. State Diagram of Transmitter Enable

Idle State
(Transmitter

Enabled)

Transmit
Disable

Transmission
Active

UTXEx = 0 No Data Written
to Transmit Buffer Not Completed

UTXEx = 1

UTXEx = 0

UTXEx = 1
Data Written to
Transmit Buffer Handle Interrupt

Conditions

Character
TransmittedUTXEx = 1

UTXEx = 0 And Last Buffer Entry Is Transmitted

When the transmitter is enabled (UTXEx = 1), data should not be written to
UxTXBUF unless it is ready for new data indicated by UTXIFGx = 1. Violation
can result in an erroneous transmission if data in UxTXBUF is modified as it
is being moved into the TX shift register.

It is recommended that the transmitter be disabled (UTXEx = 0) only after any
active transmission is complete. This is indicated by a set transmitter empty
bit (TXEPT = 1). Any data written to UxTXBUF while the transmitter is disabled
will be held in the buffer but will not be moved to the transmit shift register or
transmitted. Once UTXEx is set, the data in the transmit buffer is immediately
loaded into the transmit shift register and character transmission resumes.
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13.2.6 UART Baud Rate Generation

The USART baud rate generator is capable of producing standard baud rates
from non-standard source frequencies. The baud rate generator uses one
prescaler/divider and a modulator as shown in Figure 13−7. This combination
supports fractional divisors for baud rate generation. The maximum USART
baud rate is one-third the UART source clock frequency BRCLK.

Figure 13−7. MSP430 Baud Rate Generator

Bit Start

mX

BRCLK
88UCLKI

ACLK

SMCLK

SMCLK 11

BITCLK

10

01

00

202728215

Compare (0 or 1)

Modulation Data Shift Register
(LSB first)

16−Bit Counter

Q0............Q15

m0m7

......

8

UxBR1 UxBR0

Toggle
FF

N =

R

R

R

UxMCTL

+0 or 1

SSEL1   SSEL0

Timing for each bit is shown in Figure 13−8. For each bit received, a majority
vote is taken to determine the bit value. These samples occur at the N/2−1,
N/2, and N/2+1 BRCLK periods, where N is the number of BRCLKs per
BITCLK.

Figure 13−8. BITCLK Baud Rate Timing

N/2

Bit Start

BRCLK

Counter

BITCLK

N/2−1 N/2−2
1 N/2 N/2−1 1 N/2 N/2−1N/2−2

0 N/2 N/2−11

INT(N/2) + m(=  0)

INT(N/2) + m(= 1)

1 0 N/2

Bit Period

NEVEN: INT(N/2)

NODD : INT(N/2) + R(= 1)

m: corresponding modulation bit
R: Remainder from N/2 division

Majority Vote: (m=  0)

(m= 1)
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Baud Rate Bit Timing

The first stage of the baud rate generator is the 16-bit counter and comparator.
At the beginning of each bit transmitted or received, the counter is loaded with
INT(N/2) where N is the value stored in the combination of UxBR0 and UxBR1.
The counter reloads INT(N/2) for each bit period half-cycle, giving a total bit
period of N BRCLKs. For a given BRCLK clock source, the baud rate used
determines the required division factor N:

N =  BRCLK
baud rate

The division factor N is often a non-integer value of which the integer portion
can be realized by the prescaler/divider. The second stage of the baud rate
generator, the modulator, is used to meet the fractional part as closely as
possible. The factor N is then defined as:

N � UxBR � 1
n �

n�1

i�0
mi

Where:

N: Target division factor
UxBR: 16-bit representation of registers UxBR0 and UxBR1
i: Bit position in the character
n: Total number of bits in the character
mi : Data of each corresponding modulation bit (1 or 0)

Baud rate �
BRCLK

N
�

BRCLK

UxBR � 1
n �

n–1

i�0

mi

The BITCLK can be adjusted from bit to bit with the modulator to meet timing
requirements when a non-integer divisor is needed. Timing of each bit is
expanded by one BRCLK clock cycle if the modulator bit mi is set. Each time
a bit is received or transmitted, the next bit in the modulation control register
determines the timing for that bit. A set modulation bit increases the division
factor by one while a cleared modulation bit maintains the division factor given
by UxBR.

The timing for the start bit is determined by UxBR plus m0, the next bit is
determined by UxBR plus m1, and so on. The modulation sequence begins
with the LSB. When the character is greater than 8 bits, the modulation
sequence restarts with m0 and continues until all bits are processed.

Determining the Modulation Value

Determining the modulation value is an interactive process. Using the timing
error formula provided, beginning with the start bit , the individual bit errors are
calculated with the corresponding modulator bit set and cleared. The
modulation bit setting with the lower error is selected and the next bit error is
calculated. This process is continued until all bit errors are minimized. When
a character contains more than 8 bits, the modulation bits repeat. For example,
the 9th bit of a character uses modulation bit 0.
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Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. By
modulating each bit, the cumulative bit error is reduced. The individual bit error
can be calculated by:

Error [%] � �baud rate
BRCLK

��(j � 1) � UxBR � �

j

i�0
mi�� (j � 1)	� 100%

With:
baud rate: Desired baud rate 
BRCLK: Input frequency − UCLKI, ACLK, or SMCLK
j: Bit position - 0 for the start bit, 1 for data bit D0, and so on
UxBR: Division factor in registers UxBR1 and UxBR0

For example, the transmit errors for the following conditions are calculated:

Baud rate = 2400
BRCLK = 32,768 Hz (ACLK)
UxBR = 13, since the ideal division factor is 13.65
UxMCTL = 6Bh: m7=0, m6=1, m5=1, m4=0, m3=1, m2=0,

m1=1, and m0=1. The LSB of UxMCTL is used first.

Start bit Error [%] � 
baud rate
BRCLK

� ((0 � 1) � UxBR � 1)–1�� 100% � 2.54%

Data bit D0 Error [%] � 
baud rate
BRCLK

� ((1 � 1) � UxBR � 2)–2�� 100% � 5.08%

Data bit D1 Error [%] � 
baud rate
BRCLK

� ((2 � 1) � UxBR � 2)–3�� 100% � 0.29%

Data bit D2 Error [%] � 
baud rate
BRCLK

� ((3 � 1) � UxBR � 3)–4�� 100% � 2.83%

Data bit D3 Error [%] � 
baud rate
BRCLK

� ((4 � 1) � UxBR � 3)–5�� 100% ��1.95%

Data bit D4 Error [%] � 
baud rate
BRCLK

� ((5 � 1) � UxBR � 4)–6�� 100% � 0.59%

Data bit D5 Error [%] � 
baud rate
BRCLK

� ((6 � 1) � UxBR � 5)–7�� 100% � 3.13%

Data bit D6 Error [%] � 
baud rate
BRCLK

� ((7 � 1) � UxBR � 5)–8�� 100% � �1.66%

Data bit D7 Error [%] � 
baud rate
BRCLK

� ((8 � 1) � UxBR � 6)–9�� 100% � 0.88%

Parity bit Error [%] � 
baud rate
BRCLK

� ((9 � 1) � UxBR � 7)–10�� 100% � 3.42%

Stop bit 1 Error [%] � 
baud rate
BRCLK

� ((10 � 1) � UxBR � 7)–11�� 100% � �1.37%

The results show the maximum per-bit error to be 5.08% of a BITCLK period.
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Receive Bit Timing

Receive timing consists of two error sources. The first is the bit-to-bit timing
error. The second is the error between a start edge occurring and the start
edge being accepted by the USART. Figure 13−9 shows the asynchronous
timing errors between data on the URXDx pin and the internal baud-rate clock.

Figure 13−9. Receive Error

1 2 3 4 5 6

0i

t0tideal

7 8

1

t1

2

9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7
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D0 D1ST

Synchronization Error ± 0.5x BRCLK

Int(UxBR/2)+m0 =
Int (13/2)+1 = 6+1 = 7
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UxBR +m1 = 13+1 = 14 UxBR +m2 = 13+0 = 13

Majority Vote Taken

BRCLK

URXDx

URXDS

tactual

Sample
URXDS

The ideal start bit timing tideal(0) is half the baud-rate timing tbaud rate because
the bit is tested in the middle of its period. The ideal baud rate timing tideal(i) for
the remaining character bits is the baud rate timing tbaud rate. The individual bit
errors can be calculated by:

Error [%] ��

�

baud rate
BRCLK

��2 ��m0 � int 
UxBR
2
�� � 
i � UxBR � �

j

i�1
mi �	� 1 � j� � 100%

Where:
baud rate is the required baud rate 
BRCLK is the input frequency—selected for UCLK, ACLK, or SMCLK
j = 0 for the start bit, 1 for data bit D0, and so on
UxBR is the division factor in registers UxBR1 and UxBR0
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For example, the receive errors for the following conditions are calculated:

Baud rate = 2400
BRCLK = 32,768 Hz (ACLK)
UxBR = 13, since the ideal division factor is 13.65
UxMCTL =  6B:m7=0, m6=1, m5=1, m4=0, m3=1, m2=0, m1=1 and

m0=1 The LSB of UxMCTL is used first.

Data bit D1 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (2 � UxBR � 1)]–1–2�� 100% � 0.29%

Data bit D2 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (3 � UxBR � 2)]–1–3�� 100% � 2.83%

Data bit D3 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (4 � UxBR � 2)]–1–4�� 100% � –1.95%

Data bit D4 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (5 � UxBR � 3)]–1–5�� 100% � 0.59%

Data bit D5 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (6 � UxBR � 4)]–1–6�� 100% � 3.13%

Data bit D6 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (7 � UxBR � 4)]–1–7�� 100% � –1.66%

Data bit D7 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (8 � UxBR � 5)]–1–8�� 100% � 0.88%

Parity bit Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (9 � UxBR � 6)]–1–9�� 100% � 3.42%

Stop bit 1 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (10 � UxBR � 6)]–1–10�� 100% � –1.37%

Start bit Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (0 � UxBR � 0)] � 1 � 0�� 100% � 2.54%

Data bit D0 Error [%] � 
baud rate
BRCLK

� [2x(1 � 6) � (1 � UxBR � 1)]–1–1�� 100% � 5.08%

The results show the maximum per-bit error to be 5.08% of a BITCLK period.
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Typical Baud Rates and Errors

Standard baud rate frequency data for UxBRx and UxMCTL are listed in
Table 13−2 for a 32,768-Hz watch crystal (ACLK) and a typical 1,048,576-Hz
SMCLK.

The receive error is the accumulated time versus the ideal scanning time in the
middle of each bit. The transmit error is the accumulated timing error versus
the ideal time of the bit period.

Table 13−2.Commonly Used Baud Rates, Baud Rate Data, and Errors

Divide by A: BRCLK = 32,768 Hz B: BRCLK = 1,048,576 Hz

Baud
Rate A: B: UxBR1 UxBR0 UxMCTL

Max.
TX

Error %

Max.
RX

Error %

Synchr.
RX 

Error % UxBR1 UxBR0 UxMCTL

Max.
TX 

Error %

Max.
RX 

Error %

1200 27.31 873.81 0 1B 03 −4/3 −4/3 ± 2 03 69 FF 0/0.3 ± 2

2400 13.65 436.91 0 0D 6B −6/3 −6/3 ± 4 01 B4 FF 0/0.3 ± 2

4800 6.83 218.45 0 06 6F −9/11 −9/11 ± 7 0 DA 55 0/0.4 ± 2

9600 3.41 109.23 0 03 4A −21/12 −21/12 ± 15 0 6D 03 −0.4/1 ± 2

19,200 54.61 0 36 6B −0.2/2 ± 2

38,400 27.31 0 1B 03 −4/3 ± 2

76,800 13.65 0 0D 6B −6/3 ± 4

115,200 9.1 0 09 08 −5/7 ± 7
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13.2.7 USART Interrupts

The USART has one interrupt vector for transmission and one interrupt vector
for reception.

USART Transmit Interrupt Operation

The UTXIFGx interrupt flag is set by the transmitter to indicate that UxTXBUF
is ready to accept another character. An interrupt request is generated if
UTXIEx and GIE are also set. UTXIFGx is automatically reset if the interrupt
request is serviced or if a character is written to UxTXBUF.

UTXIFGx is set after a PUC or when SWRST = 1. UTXIEx is reset after a PUC
or when SWRST = 1. The operation is shown is Figure 13−10.

Figure 13−10. Transmit Interrupt Operation
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USART Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded
into UxRXBUF. An interrupt request is generated if URXIEx and GIE are also
set. URXIFGx and URXIEx are reset by a system reset PUC signal or when
SWRST = 1. URXIFGx is automatically reset if the pending interrupt is served
(when URXSE = 0) or when UxRXBUF is read. The operation is shown in
Figure 13−11.

Figure 13−11.Receive Interrupt Operation
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URXEIE is used to enable or disable erroneous characters from setting
URXIFGx. When using multiprocessor addressing modes, URXWIE is used
to auto-detect valid address characters and reject unwanted data characters.

Two types of characters do not set URXIFGx:

� Erroneous characters when URXEIE = 0
� Non-address characters when URXWIE = 1

When URXEIE = 1 a break condition will set the BRK bit and the URXIFGx flag.
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Receive-Start Edge Detect Operation

The URXSE bit enables the receive start-edge detection feature. The
recommended usage of the receive-start edge feature is when BRCLK is
sourced by the DCO and when the DCO is off because of low-power mode
operation. The ultra-fast turn-on of the DCO allows character reception after
the start edge detection.

When URXSE, URXIEx and GIE are set and a start edge occurs on URXDx,
the internal signal URXS will be set. When URXS is set, a receive interrupt
request is generated but URXIFGx is not set. User software in the receive
interrupt service routine can test URXIFGx to determine the source of the
interrupt. When URXIFGx = 0 a start edge was detected and when URXIFGx
= 1 a valid character (or break) was received.

When the ISR determines the interrupt request was from a start edge, user
software toggles URXSE, and must enable the BRCLK source by returning
from the ISR to active mode or to a low-power mode where the source is active.
If the ISR returns to a low-power mode where the BRCLK source is inactive,
the character will not be received. Toggling URXSE clears the URXS signal
and re-enables the start edge detect feature for future characters. See chapter
System Resets, Interrupts, and Operating Modes for information on entering
and exiting low-power modes.

The now active BRCLK allows the USART to receive the balance of the
character. After the full character is received and moved to UxRXBUF,
URXIFGx is set and an interrupt service is again requested. Upon ISR entry,
URXIFGx = 1 indicating a character was received. The URXIFGx flag is
cleared when user software reads UxRXBUF.

; Interrupt handler for start condition and

; Character receive. BRCLK = DCO.

U0RX_Int BIT.B #URXIFG0,&IFG2 ; Test URXIFGx to determine

JNE ST_COND ; If start or character

MOV.B &UxRXBUF,dst ; Read buffer

... ;

RETI ;

ST_COND BIC.B #URXSE,&U0TCTL ; Clear URXS signal

BIS.B #URXSE,&U0TCTL ; Re-enable edge detect

BIC #SCG0+SCG1,0(SP) ; Enable BRCLK = DCO

RETI ;

Note: Break Detect With Halted UART Clock

When using the receive start-edge detect feature a break condition cannot
be detected when the BRCLK source is off.
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Receive-Start Edge Detect Conditions

When URXSE = 1, glitch suppression prevents the USART from being
accidentally started. Any low-level on URXDx shorter than the deglitch time tτ
(approximately 300 ns) will be ignored by the USART and no interrupt request
will be generated as shown in Figure 13−12. See the device-specific
datasheet for parameters.

Figure 13−12. Glitch Suppression, USART Receive Not Started

URXDx

URXS

tτ

When a glitch is longer than tτ, or a valid start bit occurs on URXDx, the USART
receive operation is started and a majority vote is taken as shown in
Figure 13−13. If the majority vote fails to detect a start bit the USART halts
character reception.

If character reception is halted, an active BRCLK is not necessary. A time-out
period longer than the character receive duration can be used by software to
indicate that a character was not received in the expected time and the
software can disable BRCLK.

Figure 13−13. Glitch Suppression, USART Activated

URXDx

URXS

tτ

Majority Vote Taken
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13.3 USART Registers: UART Mode

Table 13−3 lists the registers for all devices implementing a USART module.
Table 13−4 applies only to devices with a second USART module, USART1.

Table 13−3.USART0 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U0CTL Read/write 070h 001h with PUC

Transmit control register U0TCTL Read/write 071h 001h with PUC

Receive control register U0RCTL Read/write 072h 000h with PUC

Modulation control register U0MCTL Read/write 073h Unchanged

Baud rate control register 0 U0BR0 Read/write 074h Unchanged

Baud rate control register 1 U0BR1 Read/write 075h Unchanged

Receive buffer register U0RXBUF Read 076h Unchanged

Transmit buffer register U0TXBUF Read/write 077h Unchanged

SFR module enable register 1† ME1 Read/write 004h 000h with PUC

SFR interrupt enable register 1† IE1 Read/write 000h 000h with PUC

SFR interrupt flag register 1† IFG1 Read/write 002h 082h with PUC

† Does not apply to ’12xx devices. Refer to the register definitions for registers and bit positions for these devices.

Table 13−4.USART1 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U1CTL Read/write 078h 001h with PUC

Transmit control register U1TCTL Read/write 079h 001h with PUC

Receive control register U1RCTL Read/write 07Ah 000h with PUC

Modulation control register U1MCTL Read/write 07Bh Unchanged

Baud rate control register 0 U1BR0 Read/write 07Ch Unchanged

Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged

Receive buffer register U1RXBUF Read 07Eh Unchanged

Transmit buffer register U1TXBUF Read/write 07Fh Unchanged

SFR module enable register 2 ME2 Read/write 005h 000h with PUC

SFR interrupt enable register 2 IE2 Read/write 001h 000h with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 020h with PUC

Note: Modifying SFR bits

To avoid modifying control bits of other modules, it is recommended to set
or clear the IEx and IFGx bits using BIS.B or BIC.B instructions, rather than
MOV.B or CLR.B instructions.
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UxCTL, USART Control Register

7 6 5 4 3 2 1 0

PENA PEV SPB CHAR LISTEN SYNC MM SWRST

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

PENA Bit 7 Parity enable
0 Parity disabled.
1 Parity enabled. Parity bit is generated (UTXDx) and expected

(URXDx). In address-bit multiprocessor mode, the address bit is
included in the parity calculation.

PEV Bit 6 Parity select. PEV is not used when parity is disabled.
0 Odd parity
1 Even parity

SPB Bit 5 Stop bit select. Number of stop bits transmitted. The receiver always
checks for one stop bit.
0 One stop bit
1 Two stop bits

CHAR Bit 4 Character length. Selects 7-bit or 8-bit character length.
0 7-bit data
1 8-bit data

LISTEN Bit 3 Listen enable. The LISTEN bit selects loopback mode.
0 Disabled
1 Enabled. UTXDx is internally fed back to the receiver.

SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPI Mode

MM Bit 1 Multiprocessor mode select
0 Idle-line multiprocessor protocol
1 Address-bit multiprocessor protocol

SWRST Bit 0 Software reset enable
0 Disabled. USART reset released for operation
1 Enabled. USART logic held in reset state
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UxTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0

Unused CKPL SSELx URXSE TXWAKE Unused TXEPT

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

Unused Bit 7 Unused

CKPL Bit 6 Clock polarity select
0 UCLKI = UCLK
1 UCLKI = inverted UCLK

SSELx Bits
5-4

Source select. These bits select the BRCLK source clock.
00 UCLKI
01 ACLK
10 SMCLK
11 SMCLK

URXSE Bit 3 UART receive start-edge. The bit enables the UART receive start-edge
feature.
0 Disabled
1 Enabled

TXWAKE Bit 2 Transmitter wake
0 Next character transmitted is data
1 Next character transmitted is an address

Unused Bit 1 Unused

TXEPT Bit 0 Transmitter empty flag
0 UART is transmitting data and/or data is waiting in UxTXBUF
1 Transmitter shift register and UxTXBUF are empty or SWRST=1
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UxRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0

FE PE OE BRK URXEIE URXWIE RXWAKE RXERR

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

FE Bit 7 Framing error flag
0 No error
1 Character received with low stop bit

PE Bit 6 Parity error flag. When PENA = 0, PE is read as 0.
0 No error
1 Character received with parity error

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UxRXBUF before the previous character was read.
0 No error
1 Overrun error occurred

BRK Bit 4 Break detect flag
0 No break condition
1 Break condition occurred

URXEIE Bit 3 Receive erroneous-character interrupt-enable
0 Erroneous characters rejected and URXIFGx is not set
1 Erroneous characters received will set URXIFGx

URXWIE Bit 2 Receive wake-up interrupt-enable. This bit enables URXIFGx to be set
when an address character is received. When URXEIE = 0, an address
character will not set URXIFGx if it is received with errors.
0 All received characters set URXIFGx
1 Only received address characters set URXIFGx

RXWAKE Bit 1 Receive wake-up flag
0 Received character is data
1 Received character is an address

RXERR Bit 0 Receive error flag. This bit indicates a character was received with error(s).
When RXERR = 1, on or more error flags (FE,PE,OE, BRK) is also set.
RXERR is cleared when UxRXBUF is read.
0 No receive errors detected
1 Receive error detected
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UxBR0, USART Baud Rate Control Register 0

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

UxBR1, USART Baud Rate Control Register 1

7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28

rw rw rw rw rw rw rw rw

UxBRx The valid baud-rate control range is 3 ≤ UxBR < 0FFFFh, where UxBR =
{UxBR1+UxBR0}. Unpredictable receive and transmit timing occurs if
UxBR <3.

UxMCTL, USART Modulation Control Register

7 6 5 4 3 2 1 0

m7 m6 m5 m4 m3 m2 m1 m0

rw rw rw rw rw rw rw rw

UxMCTLx Bits
7−0

Modulation bits. These bits select the modulation for BRCLK.
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UxRXBUF, USART Receive Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

r r r r r r r r

UxRXBUFx Bits
7−0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UxRXBUF resets the
receive-error bits, the RXWAKE bit, and URXIFGx. In 7-bit data mode,
UxRXBUF is LSB justified and the MSB is always reset.

UxTXBUF, USART Transmit Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

UxTXBUFx Bits
7−0

The transmit data buffer is user accessible and holds the data waiting to be
moved into the transmit shift register and transmitted on UTXDx. Writing to
the transmit data buffer clears UTXIFGx. The MSB of UxTXBUF is not
used for 7-bit data and is reset.
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ME1, Module Enable Register 1

7 6 5 4 3 2 1 0

UTXE0† URXE0†

rw−0 rw−0

UTXE0† Bit 7 USART0 transmit enable. This bit enables the transmitter for USART0.
0 Module not enabled
1 Module enabled

URXE0† Bit 6 USART0 receive enable. This bit enables the receiver for USART0.
0 Module not enabled
1 Module enabled

Bits
5-0

These bits may be used by other modules. See device-specific datasheet.

† Does not apply to MSP430x12xx devices. See ME2 for the MSP430x12xx USART0 module enable bits

ME2, Module Enable Register 2

7 6 5 4 3 2 1 0

UTXE1 URXE1 UTXE0‡ URXE0‡

rw−0 rw−0 rw−0 rw−0

Bits
7-6

These bits may be used by other modules. See device-specific datasheet.

UTXE1 Bit 5 USART1 transmit enable. This bit enables the transmitter for USART1.
0 Module not enabled
1 Module enabled

URXE1 Bit 4 USART1 receive enable. This bit enables the receiver for USART1.
0 Module not enabled
1 Module enabled

Bits
3-2

These bits may be used by other modules. See device-specific datasheet.

UTXE0‡ Bit 1 USART0 transmit enable. This bit enables the transmitter for USART0.
0 Module not enabled
1 Module enabled

URXE0‡ Bit 0 USART0 receive enable. This bit enables the receiver for USART0.
0 Module not enabled
1 Module enabled

‡ MSP430x12xx devices only
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IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

UTXIE0† URXIE0†

rw−0 rw−0

UTXIE0† Bit 7 USART0 transmit interrupt enable. This bit enables the UTXIFG0 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

URXIE0† Bit 6 USART0 receive interrupt enable. This bit enables the URXIFG0 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

Bits
5-0

These bits may be used by other modules. See device-specific datasheet.

† Does not apply to MSP430x12xx devices. See IE2 for the MSP430x12xx USART0 interrupt enable bits

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UTXIE1 URXIE1 UTXIE0‡ URXIE0‡

rw−0 rw−0 rw−0 rw−0

Bits
7-6

These bits may be used by other modules. See device-specific datasheet.

UTXIE1 Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

Bits
3-2

These bits may be used by other modules. See device-specific datasheet.

UTXIE0‡ Bit 1 USART0 transmit interrupt enable. This bit enables the UTXIFG0 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

URXIE0‡ Bit 0 USART0 receive interrupt enable. This bit enables the URXIFG0 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

‡ MSP430x12xx devices only
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IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

UTXIFG0† URXIFG0†

rw−1 rw−0

UTXIFG0† Bit 7 USART0 transmit interrupt flag. UTXIFG0 is set when U0TXBUF is empty.
0 No interrupt pending
1 Interrupt pending

URXIFG0† Bit 6 USART0 receive interrupt flag. URXIFG0 is set when U0RXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
5-0

These bits may be used by other modules. See device-specific datasheet.

† Does not apply to MSP430x12xx devices. See IFG2 for the MSP430x12xx USART0 interrupt flag bits

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UTXIFG1 URXIFG1 UTXIFG0‡ URXIFG0‡

rw−1 rw−0 rw−1 rw−0

Bits
7-6

These bits may be used by other modules. See device-specific datasheet.

UTXIFG1 Bit 5 USART1 transmit interrupt flag. UTXIFG1 is set when U1TXBUF empty.
0 No interrupt pending
1 Interrupt pending

URXIFG1 Bit 4 USART1 receive interrupt flag. URXIFG1 is set when U1RXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
3-2

These bits may be used by other modules. See device-specific datasheet.
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UTXIFG0‡ Bit 1 USART0 transmit interrupt flag. UTXIFG0 is set when U0TXBUF is empty.
0 No interrupt pending
1 Interrupt pending

URXIFG0‡ Bit 0 USART0 receive interrupt flag. URXIFG0 is set when U0RXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending

‡ MSP430x12xx devices only
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The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports two serial modes with one hardware module.
This chapter discusses the operation of the synchronous peripheral interface
or SPI mode. USART0 is implemented on the MSP430x12xx, MSP430x13xx,
and MSP430x15x devices. In addition to USART0, the MSP430x14x and
MSP430x16x devices implement a second identical USART module,
USART1.
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14.1 USART Introduction: SPI Mode

In synchronous mode, the USART connects the MSP430 to an external
system via three or four pins: SIMO, SOMI, UCLK, and STE. SPI mode is
selected when the SYNC bit is set and the I2C bit is cleared.

SPI mode features include:

� 7- or 8-bit data length

� 3-pin and 4-pin SPI operation

� Master or slave modes

� Independent transmit and receive shift registers

� Separate transmit and receive buffer registers

� Selectable UCLK polarity and phase control

� Programmable UCLK frequency in master mode

� Independent interrupt capability for receive and transmit

Figure 14−1 shows the USART when configured for SPI mode.
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Figure 14−1. USART Block Diagram: SPI Mode
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14.2 USART Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using
a shared clock provided by the master. An additional pin, STE, is provided as
to enable a device to receive and transmit data and is controlled by the master.

Three or four signals are used for SPI data exchange:

� SIMO Slave in, master out
Master mode: SIMO is the data output line.
Slave mode: SIMO is the data input line.

� SOMI Slave out, master in
Master mode: SOMI is the data input line.
Slave mode: SOMI is the data output line.

� UCLK USART SPI clock
Master mode: UCLK is an output.
Slave mode: UCLK is an input.

� STE Slave transmit enable. Used in 4-pin mode to allow multiple
masters on a single bus. Not used in 3-pin mode.
4-Pin master mode:
When STE is high, SIMO and UCLK operate normally.
When STE is low, SIMO and UCLK are set to the input direction.
4-pin slave mode:
When STE is high, RX/TX operation of the slave is disabled and
SOMI is forced to the input direction.
When STE is low, RX/TX operation of the slave is enabled and
SOMI operates normally.

14.2.1 USART Initialization and Reset

The USART is reset by a PUC or by the SWRST bit. After a PUC, the SWRST
bit is automatically set, keeping the USART in a reset condition. When set, the
SWRST bit resets the URXIEx, UTXIEx, URXIFGx, OE, and FE bits and sets
the UTXIFGx flag. The USPIEx bit is not altered by SWRST. Clearing SWRST
releases the USART for operation. See also chapter USART Module, I2C
mode for USART0 when reconfiguring from I2C mode to SPI mode.

Note: Initializing or Re-Configuring the USART Module

The required USART initialization/re-configuration process is:

1) Set SWRST (BIS.B  #SWRST,&UxCTL)

2) Initialize all USART registers with SWRST=1 (including UxCTL)

3) Enable USART module via the MEx SFRs (USPIEx)

4) Clear SWRST via software (BIC.B  #SWRST,&UxCTL)

5) Enable interrupts (optional) via the IEx SFRs (URXIEx and/or UTXIEx)

Failure to follow this process may result in unpredictable USART behavior.
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14.2.2 Master Mode

Figure 14−2. USART Master and External Slave
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Figure 14−2 shows the USART as a master in both 3-pin and 4-pin
configurations. The USART initiates data transfer when data is moved to the
transmit data buffer UxTXBUF. The UxTXBUF data is moved to the TX shift
register when the TX shift register is empty, initiating data transfer on SIMO
starting with the most-significant bit. Data on SOMI is shifted into the receive
shift register on the opposite clock edge, starting with the most-significant bit.
When the character is received, the receive data is moved from the RX shift
register to the received data buffer UxRXBUF and the receive interrupt flag,
URXIFGx, is set, indicating the RX/TX operation is complete.

A set transmit interrupt flag, UTXIFGx, indicates that data has moved from
UxTXBUF to the TX shift register and UxTXBUF is ready for new data. It does
not indicate RX/TX completion.

To receive data into the USART in master mode, data must be written to
UxTXBUF because receive and transmit operations operate concurrently.

Four-Pin SPI Master Mode

In 4-pin master mode, STE is used to prevent conflicts with another master.
The master operates normally when STE is high. When STE is low:

� SIMO and UCLK are set to inputs and no longer drive the bus

� The error bit FE is set indicating a communication integrity violation to be
handled by the user

A low STE signal does not reset the USART module. The STE input signal is
not used in 3-pin master mode.
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14.2.3 Slave Mode

Figure 14−3. USART Slave and External Master
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Figure 14−3 shows the USART as a slave in both 3-pin and 4-pin
configurations. UCLK is used as the input for the SPI clock and must be
supplied by the external master. The data-transfer rate is determined by this
clock and not by the internal baud rate generator. Data written to UxTXBUF
and moved to the TX shift register before the start of UCLK is transmitted on
SOMI. Data on SIMO is shifted into the receive shift register on the opposite
edge of UCLK and moved to UxRXBUF when the set number of bits are
received. When data is moved from the RX shift register to UxRXBUF, the
URXIFGx interrupt flag is set, indicating that data has been received. The
overrun error bit, OE, is set when the previously received data is not read from
UxRXBUF before new data is moved to UxRXBUF.

Four-Pin SPI Slave Mode

In 4-pin slave mode, STE is used by the slave to enable the transmit and
receive operations and is provided by the SPI master. When STE is low, the
slave operates normally. When STE is high:

� Any receive operation in progress on SIMO is halted

� SOMI is set to the input direction

A high STE signal does not reset the USART module. The STE input signal
is not used in 3-pin slave mode.
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14.2.4 SPI Enable

The SPI transmit/receive enable bit USPIEx enables or disables the USART
in SPI mode. When USPIEx = 0, the USART stops operation after the current
transfer completes, or immediately if no operation is active. A PUC or set
SWRST bit disables the USART immediately and any active transfer is
terminated.

Transmit Enable

When USPIEx = 0, any further write to UxTXBUF does not transmit. Data
written to UxTXBUF will begin to transmit when USPIEx = 1 and the BRCLK
source is active. Figure 14−4 and Figure 14−5 show the transmit enable state
diagrams.

Figure 14−4. Master Mode Transmit Enable
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Figure 14−5. Slave Transmit Enable State Diagram
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Receive Enable

The SPI receive enable state diagrams are shown in Figure 14−6 and
Figure 14−7. When USPIEx = 0, UCLK is disabled from shifting data into the
RX shift register.

Figure 14−6. SPI Master Receive-Enable State Diagram
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Figure 14−7. SPI Slave Receive-Enable State Diagram
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14.2.5 Serial Clock Control

UCLK is provided by the master on the SPI bus. When MM = 1, BITCLK is
provided by the USART baud rate generator on the UCLK pin as shown in
Figure 14−8. When MM = 0, the USART clock is provided on the UCLK pin by
the master and, the baud rate generator is not used and the SSELx bits are
don’t care. The SPI receiver and transmitter operate in parallel and use the
same clock source for data transfer.

Figure 14−8. SPI Baud Rate Generator
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The 16-bit value of UxBR0+UxBR1 is the division factor of the USART clock
source, BRCLK. The maximum baud rate that can be generated in master
mode is BRCLK/2. The maximum baud rate that can be generated in slave
mode is BRCLK. The modulator in the USART baud rate generator is not used
for SPI mode and is recommended to be set to 000h. The UCLK frequency is
given by:

Baud rate = BRCLK
UxBR

  with UxBR= [UxBR1, UxBR0]
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Serial Clock Polarity and Phase

The polarity and phase of UCLK are independently configured via the CKPL
and CKPH control bits of the USART. Timing for each case is shown in
Figure 14−9.

Figure 14−9. USART SPI Timing
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14.2.6 SPI Interrupts

The USART has one interrupt vector for transmission and one interrupt vector
for reception.

SPI Transmit Interrupt Operation

The UTXIFGx interrupt flag is set by the transmitter to indicate that UxTXBUF
is ready to accept another character. An interrupt request is generated if
UTXIEx and GIE are also set. UTXIFGx is automatically reset if the interrupt
request is serviced or if a character is written to UxTXBUF.

UTXIFGx is set after a PUC or when SWRST = 1. UTXIEx is reset after a PUC
or when SWRST = 1. The operation is shown is Figure 14−10.

Figure 14−10. Transmit Interrupt Operation
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Note: Writing to UxTXBUF in SPI Mode

Data written to UxTXBUF when UTXIFGx = 0 and USPIEx = 1 may result in
erroneous data transmission.
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SPI Receive Interrupt Operation

The URXIFGx interrupt flag is set each time a character is received and loaded
into UxRXBUF as shown in Figure 14−11 and Figure 14−12. An interrupt
request is generated if URXIEx and GIE are also set. URXIFGx and URXIEx
are reset by a system reset PUC signal or when SWRST = 1. URXIFGx is
automatically reset if the pending interrupt is served or when UxRXBUF is
read.

Figure 14−11.Receive Interrupt Operation
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Figure 14−12. Receive Interrupt State Diagram
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14.3 USART Registers: SPI Mode

The USART registers, shown in Table 14−1 and Table 14−2, are byte
structured and should be accessed using byte instructions.

Table 14−1.USART0 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U0CTL Read/write 070h 001h with PUC

Transmit control register U0TCTL Read/write 071h 001h with PUC

Receive control register U0RCTL Read/write 072h 000h with PUC

Modulation control register U0MCTL Read/write 073h Unchanged

Baud rate control register 0 U0BR0 Read/write 074h Unchanged

Baud rate control register 1 U0BR1 Read/write 075h Unchanged

Receive buffer register U0RXBUF Read 076h Unchanged

Transmit buffer register U0TXBUF Read/write 077h Unchanged

SFR module enable register 1† ME1 Read/write 004h 000h with PUC

SFR interrupt enable register 1† IE1 Read/write 000h 000h with PUC

SFR interrupt flag register 1† IFG1 Read/write 002h 082h with PUC

† Does not apply to MSP430x12xx devices. Refer to the register definitions for registers and bit positions for these devices.

Table 14−2.USART1 Control and Status Registers

Register Short Form Register Type Address Initial State

USART control register U1CTL Read/write 078h 001h with PUC

Transmit control register U1TCTL Read/write 079h 001h with PUC

Receive control register U1RCTL Read/write 07Ah 000h with PUC

Modulation control register U1MCTL Read/write 07Bh Unchanged

Baud rate control register 0 U1BR0 Read/write 07Ch Unchanged

Baud rate control register 1 U1BR1 Read/write 07Dh Unchanged

Receive buffer register U1RXBUF Read 07Eh Unchanged

Transmit buffer register U1TXBUF Read/write 07Fh Unchanged

SFR module enable register 2 ME2 Read/write 005h 000h with PUC

SFR interrupt enable register 2 IE2 Read/write 001h 000h with PUC

SFR interrupt flag register 2 IFG2 Read/write 003h 020h with PUC

Note: Modifying the SFR bits

To avoid modifying control bits for other modules, it is recommended to set
or clear the IEx and IFGx bits using BIS.B or BIC.B instructions, rather than
MOV.B or CLR.B instructions.
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UxCTL, USART Control Register

7 6 5 4 3 2 1 0

Unused Unused I2C† CHAR LISTEN SYNC MM SWRST

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

Unused Bits
7−6

Unused

I2C† Bit 5 I2C mode enable. This bit selects I2C or SPI operation when SYNC = 1.
0 SPI mode
1 I2C mode

CHAR Bit 4 Character length
0 7-bit data
1 8-bit data

LISTEN Bit 3 Listen enable. The LISTEN bit selects the loopback mode
0 Disabled
1 Enabled. The transmit signal is internally fed back to the receiver

SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPI mode

MM Bit 1 Master mode
0 USART is slave
1 USART is master

SWRST Bit 0 Software reset enable
0 Disabled. USART reset released for operation
1 Enabled. USART logic held in reset state

† Applies to USART0 on MSP430x15x and MSP430x16x devices only.
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UxTCTL, USART Transmit Control Register

7 6 5 4 3 2 1 0

CKPH CKPL SSELx Unused Unused STC TXEPT

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

CKPH Bit 7 Clock phase select. Controls the phase of UCLK.
0 Normal UCLK clocking scheme
1 UCLK is delayed by one half cycle

CKPL Bit 6 Clock polarity select
0 The inactive level is low; data is output with the rising edge of UCLK;

input data is latched with the falling edge of UCLK.
1 The inactive level is high; data is output with the falling edge of

UCLK; input data is latched with the rising edge of UCLK.

SSELx Bits
5-4

Source select. These bits select the BRCLK source clock.
00 External UCLK (valid for slave mode only)
01 ACLK (valid for master mode only)
10 SMCLK (valid for master mode only)
11 SMCLK (valid for master mode only)

Unused Bit 3 Unused

Unused Bit 2 Unused

STC Bit 1 Slave transmit control.
0 4-pin SPI mode: STE enabled.
1 3-pin SPI mode: STE disabled.

TXEPT Bit 0 Transmitter empty flag. The TXEPT flag is not used in slave mode.
0 Transmission active and/or data waiting in UxTXBUF
1 UxTXBUF and TX shift register are empty
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UxRCTL, USART Receive Control Register

7 6 5 4 3 2 1 0

FE Unused OE Unused Unused Unused Unused Unused

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

FE Bit 7 Framing error flag. This bit indicates a bus conflict when MM = 1 and STC
= 0. FE is unused in slave mode.
0 No conflict detected
1 A negative edge occurred on STE, indicating bus conflict

Undefined Bit 6 Unused

OE Bit 5 Overrun error flag. This bit is set when a character is transferred into
UxRXBUF before the previous character was read. OE is automatically
reset when UxRXBUF is read, when SWRST = 1, or can be reset by
software.
0 No error
1 Overrun error occurred

Unused Bit 4 Unused

Unused Bit 3 Unused

Unused Bit 2 Unused

Unused Bit 1 Unused

Unused Bit 0 Unused
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UxBR0, USART Baud Rate Control Register 0

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

UxBR1, USART Baud Rate Control Register 1

7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28

rw rw rw rw rw rw rw rw

UxBRx The baud-rate generator uses the content of {UxBR1+UxBR0} to set the
baud rate. Unpredictable SPI operation occurs if UxBR < 2.

UxMCTL, USART Modulation Control Register

7 6 5 4 3 2 1 0

m7 m6 m5 m4 m3 m2 m1 m0

rw rw rw rw rw rw rw rw

UxMCTLx Bits
7−0

The modulation control register is not used for SPI mode and should be set
to 000h.
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UxRXBUF, USART Receive Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

r r r r r r r r

UxRXBUFx Bits
7−0

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UxRXBUF resets the OE
bit and URXIFGx flag. In 7-bit data mode, UxRXBUF is LSB justified and
the MSB is always reset.

UxTXBUF, USART Transmit Buffer Register

7 6 5 4 3 2 1 0

27 26 25 24 23 22 21 20

rw rw rw rw rw rw rw rw

UxTXBUFx Bits
7−0

The transmit data buffer is user accessible and contains current data to be
transmitted. When seven-bit character-length is used, the data should be
MSB justified before being moved into UxTXBUF. Data is transmitted MSB
first. Writing to UxTXBUF clears UTXIFGx.
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ME1, Module Enable Register 1

7 6 5 4 3 2 1 0

USPIE0†

rw−0

Bit 7 This bit may be used by other modules. See device-specific datasheet.

USPIE0† Bit 6 USART0 SPI enable. This bit enables the SPI mode for USART0.
0 Module not enabled
1 Module enabled

Bits
5-0

These bits may be used by other modules. See device-specific datasheet.

† Does not apply to MSP430x12xx devices. See ME2 for the MSP430x12xx USART0 module enable bit

ME2, Module Enable Register 2

7 6 5 4 3 2 1 0

USPIE1 USPIE0‡

rw−0 rw−0

Bits
7-5

These bits may be used by other modules. See device-specific datasheet.

USPIE1 Bit 4 USART1 SPI enable. This bit enables the SPI mode for USART1.
0 Module not enabled
1 Module enabled

Bits
3-1

These bits may be used by other modules. See device-specific datasheet.

USPIE0‡ Bit 0 USART0 SPI enable. This bit enables the SPI mode for USART0.
0 Module not enabled
1 Module enabled

‡ MSP430x12xx devices only
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IE1, Interrupt Enable Register 1

7 6 5 4 3 2 1 0

UTXIE0† URXIE0†

rw−0 rw−0

UTXIE0† Bit 7 USART0 transmit interrupt enable. This bit enables the UTXIFG0 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

URXIE0† Bit 6 USART0 receive interrupt enable. This bit enables the URXIFG0 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

Bits
5-0

These bits may be used by other modules. See device-specific datasheet.

† Does not apply to MSP430x12xx devices. See IE2 for the MSP430x12xx USART0 interrupt enable bits

IE2, Interrupt Enable Register 2

7 6 5 4 3 2 1 0

UTXIE1 URXIE1 UTXIE0‡ URXIE0‡

rw−0 rw−0 rw−0 rw−0

Bits
7-6

These bits may be used by other modules. See device-specific datasheet.

UTXIE1 Bit 5 USART1 transmit interrupt enable. This bit enables the UTXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

URXIE1 Bit 4 USART1 receive interrupt enable. This bit enables the URXIFG1 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

Bits
3-2

These bits may be used by other modules. See device-specific datasheet.
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UTXIE0‡ Bit 1 USART0 transmit interrupt enable. This bit enables the UTXIFG0 interrupt.
0 Interrupt not enabled
1 Interrupt enabled

URXIE0‡ Bit 0 USART0 receive interrupt enable. This bit enables the URXIFG0 interrupt for
USART0.
0 Interrupt not enabled
1 Interrupt enabled

‡ MSP430x12xx devices only
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IFG1, Interrupt Flag Register 1

7 6 5 4 3 2 1 0

UTXIFG0† URXIFG0†

rw−1 rw−0

UTXIFG0† Bit 7 USART0 transmit interrupt flag. UTXIFG0 is set when U0TXBUF is empty.
0 No interrupt pending
1 Interrupt pending

URXIFG0† Bit 6 USART0 receive interrupt flag. URXIFG0 is set when U0RXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
5-0

These bits may be used by other modules. See device-specific datasheet.

† Does not apply to MSP430x12xx devices. See IFG2 for the MSP430x12xx USART0 interrupt flag bits

IFG2, Interrupt Flag Register 2

7 6 5 4 3 2 1 0

UTXIFG1 URXIFG1 UTXIFG0‡ URXIFG0‡

rw−1 rw−0 rw−1 rw−0

Bits
7-6

These bits may be used by other modules. See device-specific datasheet.

UTXIFG1 Bit 5 USART1 transmit interrupt flag. UTXIFG1 is set when U1TXBUF is empty.
0 No interrupt pending
1 Interrupt pending

URXIFG1 Bit 4 USART1 receive interrupt flag. URXIFG1 is set when U1RXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending

Bits
3-2

These bits may be used by other modules. See device-specific datasheet.

UTXIFG0‡ Bit 1 USART0 transmit interrupt flag. UTXIFG0 is set when U0TXBUF is empty.
0 No interrupt pending
1 Interrupt pending

URXIFG0‡ Bit 0 USART0 receive interrupt flag. URXIFG0 is set when U0RXBUF has received
a complete character.
0 No interrupt pending
1 Interrupt pending

‡ MSP430x12xx devices only
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The universal synchronous/asynchronous receive/transmit (USART)
peripheral interface supports I2C communication in USART0. This chapter
describes the I2C mode. The I2C mode is implemented on the MSP430x15x
and MSP430x16x devices.
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15.1 I2C Module Introduction

The inter-IC control (I2C) module provides an interface between the MSP430
and I2C-compatible devices connected by way of the two-wire I2C serial bus.
External components attached to the I2C bus serially transmit and/or receive
serial data to/from the USART through the 2-wire I2C interface.

The I2C module has the following features:

� Compliance to the Philips Semiconductor I2C specification v2.1
� Byte/word format transfer
� 7-bit and 10-bit device addressing modes
� General call
� START/RESTART/STOP
� Multi-master transmitter/slave receiver mode
� Multi-master receiver/slave transmitter mode
� Combined master transmit/receive and receive/transmit mode
� Standard mode up to100 kbps and fast mode up to 400 kbps support

� Built-in FIFO for buffered read and write

� Programmable clock generation

� 16-bit wide data access to maximize bus throughput

� Automatic data byte counting

� Designed for low power

� Slave receiver START detection for auto-wake up from LPMx modes

� Extensive interrupt capability

� Implemented on USART0 only

The I2C block diagram is shown in Figure 15−1.
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Figure 15−1. USART Block Diagram: I2C Mode
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15.2 I2C Module Operation

The I2C module supports any slave or master I2C-compatible device.
Figure 15−2 shows an example of an I2C bus. Each I2C device is recognized
by a unique address and can operate as either a transmitter or a receiver. A
device connected to the I2C bus can be considered as the master or the slave
when performing data transfers. A master initiates a data transfer and gener-
ates the clock signal SCL. Any device addressed by a master is considered
a slave.

I2C data is communicated using the serial data pin (SDA) and the serial clock
pin (SCL). Both SDA and SCL are bidirectional, and must be connected to a
positive supply voltage using a pull-up resistor.

Figure 15−2. I2C Bus Connection Diagram

MSP430
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Serial Clock (SCL)
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Note: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430
VCC level.
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15.2.1 I2C Module Initialization

The I2C module is part of the USART peripheral. Individual bit definitions when
using USART0 in I2C mode are different from that in SPI or UART mode. The
default value for the U0CTL register is the UART mode. To select I2C operation
the SYNC and I2C bits must be set. After module initialization, the I2C module
is ready for transmit or receive operation. Setting I2CEN releases the I2C
module for operation.

Configuring and re-configuring the I2C module must be done when I2CEN =
0 to avoid unpredictable behavior. Setting I2CEN = 0 has the following effects:

� I2C communication stops
� SDA and SCL are high impedance
� I2CTCTL, bits 3-0 are cleared and bits 7-4 are unchanged
� I2CDCTL and I2CDR register is cleared
� Transmit and receive shift registers are cleared
� U0CTL, I2CNDAT, I2CPSC, I2CSCLL, I2CSCLH registers are unchanged
� I2COA, I2CSA, I2CIE, I2CIFG, and I2CIV registers are unchanged

When re-configuring the USART from I2C mode to UART or SPI mode the I2C,
SYNC, and I2CEN bits must first be cleared, then the SWRST must be set and
the UART or SPI initialization procedure must be followed. Failure to follow this
procedure could result in unpredictable operation.

Note: Configuring the USART Module for I 2C Operation After Reset

The required I2C configuration process is:

1) Select I2C mode with SWRST = 1 (BIS.B  #I2C + SYNC,&U0CTL)

2) Disable the I2C module (BIC.B  #I2CEN,&U0CTL)

3) Configure the I2C module with I2CEN = 0

4) Set I2CEN via software (BIS.B  #I2CEN,&U0CTL)

Failure to follow this process may result in unpredictable USART behavior.

Note: Re-Configuring the USART Module for UART or SPI Operation

When re-configuring the USART module for UART or SPI operation from I2C
operation, the required process is:

1) Clear I2C, SYNC, and I2CEN (CLR.B  &U0CTL)

2) Set SWRST (MOV.B  #SWRST,&U0CTL)

3) Continue with UART or SPI initialization procedure.

Failure to follow this process may result in unpredictable USART behavior.



I2C Module Operation

15-6 USART Peripheral Interface, I2C Mode

15.2.2 I2C Serial Data

One clock pulse is generated by the master device for each data bit
transferred. The I2C module operates with byte data. Data is transferred most
significant bit first as shown in Figure 15−3.

The first byte after a START condition consists of a 7-bit slave address and the
R/W bit. When R/W = 0, the master transmits data to a slave. When R/W = 1,
the master receives data from a slave. The ACK bit is sent from the receiver
after each byte on the 9th SCL clock.

Figure 15−3. I2C Module Data Transfer

SDA
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MSB Acknowledgement
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Acknowledgement
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1 2 7 8 9 1 2 8 9
ACK ACK

START
Condition (S)

STOP
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START and STOP conditions are generated by the master and are shown in
Figure 15−3. A START condition is a high-to-low transition on the SDA line
while SCL is high. A STOP condition is a low-to-high transition on the SDA line
while SCL is high. The busy bit, I2CBB, is set after a START and cleared after
a STOP.

Data on SDA must be stable during the high period of SCL as shown in
Figure 15−4. The high and low state of SDA can only change when SCL is low,
otherwise START or STOP conditions will be generated.

Figure 15−4. Bit Transfer on the I2C Bus
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15.2.3 I2C Addressing Modes

The I2C module supports 7-bit and 10-bit addressing modes.

7-Bit Addressing

In the 7-bit addressing format, shown in Figure 15−5, the first byte is the 7-bit
slave address and the R/W bit. The ACK bit is sent from the receiver after each
byte.

Figure 15−5. I2C Module 7-Bit Addressing Format

S Slave Address R/W ACK Data ACK Data ACK P

7 8 81 1 1 1 1 1

10-Bit Addressing

In the 10-bit addressing format, shown in Figure 15−6, the first byte is made
up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit.
The ACK bit is sent from the receiver after each byte. The next byte is the
remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the
8-bit data.

Figure 15−6. I2C Module 10-Bit Addressing Format
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7
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11 8

ACK
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Data
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Repeated START Conditions

The direction of data flow on SDA can be changed by the master, without first
stopping a transfer, by issuing a repeated START condition. This is called a
RESTART. After a RESTART is issued, the slave address is again sent out with
the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 15−7.

Figure 15−7. I2C Module Addressing Format with Repeated START Condition

1 7 8 7 81 1 1 1 1 1 1 1

S Slave Address R/W ACK Data ACK S Slave Address R/W ACK Data ACK P

1 Any
Number

1 Any Number
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15.2.4 I2C Module Operating Modes

The I2C module operates in master transmitter, master receiver, slave
transmitter, or slave receiver mode.

Master Mode

In master mode, transmit and receive operation is controlled with the I2CRM,
I2CSTT, and I2CSTP bits as described in Table 15−1. The master transmitter
and master receiver modes are shown in Figure 15−8 and Figure 15−9. SCL
is held low when the intervention of the CPU is required after a byte has been
received or transmitted.

Table 15−1.Master Operation

I2CRM I2CSTP I2CSTT Condition Or Bus Activity

X 0 0 The I2C module is in master mode, but is idle. No
START or STOP condition is generated.

0 0 1 Setting I2CSTT initiates activity. I2CNDAT is used to
determine length of transmission. A STOP condition is
not automatically generated after the I2CNDAT
number of bytes have been transferred. Software must
set I2CSTP to generate a STOP condition at the end
of transmission. This is used for RESTART conditions.

0 1 1 I2CNDAT is used to determine length of transmission.
Setting I2CSTT initiates activity. A STOP condition is
automatically generated after I2CNDAT number of
bytes have been transferred.

1 0 1 I2CNDAT is not used to determine length of
transmission. Software must control the length of the
transmission. Setting the I2CSTT bit initiates activity.
Software must set the I2CSTP bit to initiate a STOP
condition and stop activity. This mode is useful if > 255
bytes are to be transferred.

0 1 0 Setting the I2CSTP bit generates a STOP condition on
the bus after I2CNDAT number of bytes have been
sent, or immediately if I2CNDAT number of bytes have
already been sent.

1 1 0 Setting the I2CSTP bit generates a STOP condition on
the bus after the current transmission completes, or
immediately if no transmission is currently active.

1 1 1 Reserved, no bus activity.
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Figure 15−8. Master Transmitter Mode
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Figure 15−9. Master Receiver Mode
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Arbitration

If two or more master transmitters simultaneously start a transmission on the
bus, an arbitration procedure is invoked. Figure 15−10 illustrates the
arbitration procedure between two devices. The arbitration procedure uses
the data presented on SDA by the competing transmitters. The first master
transmitter that generates a logic high is overruled by the opposing master
generating a logic low. The arbitration procedure gives priority to the device
that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode, and sets
the arbitration lost flag ALIFG. If two or more devices send identical first bytes,
arbitration continues on the subsequent bytes.

Figure 15−10. Arbitration Procedure Between Two Master Transmitters
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0 0 0

1 1
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n
Device #1 Lost Arbitration
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If the arbitration procedure is in progress when a repeated START condition
or STOP condition is transmitted on SDA, the master transmitters involved in
arbitration must send the repeated START condition or STOP condition at the
same position in the format frame. Arbitration is not allowed between:

� A repeated START condition and a data bit
� A STOP condition and a data bit
� A repeated START condition and a STOP condition
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Automatic Data Byte Counting

Automatic data byte counting is supported in master mode with the I2CNDAT
register. When I2CRM = 0, the number of bytes to be received or transmitted
is written to I2CNDAT. A STOP condition is automatically generated after
I2CNDAT number of bytes have been transferred.

Note: I2CNDAT Register

Do not change the I2CNDAT register while I2CBB = 1 and I2CRM = 0.
Otherwise, unpredictable operation may occur.

Slave Mode

In slave mode, transmit and receive operations are controlled automatically by
the I2C module. The slave transmitter and slave receiver modes are shown in
Figure 15−11 and Figure 15−12.

In slave receiver mode, serial data bits received on SDA are shifted in with the
clock pulses that are generated by the master device. The slave device does
not generate the clock, but it can hold SCL low if intervention of the CPU is
required after a byte has been received. In slave receiver mode, every byte
received will be acknowledged. There is no way for a slave to generate a
NACK condition for received data.

Slave transmitter mode is entered when the slave address byte transmitted by
the master is the same as its own address and a set R/W bit has been
transmitted indicating a request to send data to the master. The slave
transmitter shifts the serial data out on SDA with the clock pulses that are
generated by the master device. The slave device does not generate the clock,
but it will hold SCL low while intervention of the CPU is required after a byte
has been transmitted.

Note: I2CTRX Bit In Slave Mode

The I2CTRX bit must be cleared for proper slave mode operation.
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Figure 15−11.Slave Transmitter
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Figure 15−12. Slave Receiver
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15.2.5 The I2C Data Register I2CDR

The I2CDR register can be accessed as an 8-bit or 16-bit register selected by
the I2CWORD bit. The I2CDR register functions as described in Table 15−2.
When I2CWORD = 1, any attempt to modify the register with a byte instruction
will fail and the register will not be modified.

Table 15−2.I2CDR Register Function

I2CWORD I2CTRX I2CDR Function

0 1 Byte mode transmit: Only the low byte is used. The byte is
double buffered. If a new byte is written before the previous
byte has been transmitted, the new byte is held in a
temporary buffer before being latched into the I2CDR low
byte. TXRDYIFG is set when I2CDR is ready to be accessed.
I2CDR should be written after I2CSTT is set.

0 0 Byte mode receive: Only the low byte is used. The byte is
double buffered. If a new byte is received before the previous
byte has been read, the new byte is held in a temporary buffer
before being latched into the I2CDR low byte. RXRDYIFG is
set when I2CDR is ready to be read.

1 1 Word mode transmit: The low byte of the word is sent first,
then the high byte. The register is double buffered. If a new
word is written before the previous word has been
transmitted, the new word is held in a temporary buffer before
being latched into the I2CDR register. TXRDYIFG is set
when I2CDR is ready to be accessed. I2CDR should be
written after I2CSTT is set.

1 0 Word mode receive: The low byte of the word was received
first, then the high byte. The register is double buffered. If a
new word is received before the previous word has been
read, the new word is held in a temporary buffer before being
latched into the I2CDR register. RXRDYIFG is set when
I2CDR is ready to be accessed.

Transmit Underflow

In master mode, underflow occurs when the transmit shift register and the
transmit buffer are empty. In slave mode, underflow occurs when the transmit
shift register and the transmit buffer are empty and the external I2C master still
requests data. When transmit underflow occurs, the I2CTXUDF bit is set.
Writing data to the I2CDR register or resetting the I2CEN bit resets I2CTXUDF.
I2CTXUDF is used in transmit mode only.

Receive Overrun

Receive overrun occurs when the receive shift register is full and the receive
buffer is full. The I2CRXOVR bit is set when receive overrun occurs. No data
is lost because SCL is held low in this condition, which stops further bus
activity. Reading the I2CDR register or resetting I2CEN resets I2CRXOVR.
The I2CRXOVR bit is used in receive mode only.
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15.2.6 I2C Clock Generation and Synchronization

The I2C module is operated with the clock source selected by the I2CSSELx
bits. The prescaler, I2CPSC, and the I2CSCLH and I2CSCLL registers
determine the frequency and duty cycle of the SCL clock signal for master
mode as shown in Figure 15−13.

Note: I2CCLK Maximum Frequency

The I2C module clock source I2CIN must be at least 10x the SCL frequency
in both master and slave modes. This condition is met automatically in
master mode by the I2CSCLL and I2CSCLH registers.

Note: I2CPSC Value

When I2CPSC > 4, unpredictable operation can result. The I2CSCLL and
I2CSCLH registers should be used to set the SCL frequency.

Figure 15−13. I2C Module SCL Generation
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During the arbitration procedure the clocks from the different masters must be
synchronized. A device that first generates a low period on SCL overrules the
other devices forcing them to start their own low periods. SCL is then held low
by the device with the longest low period. The other devices must wait for SCL
to be released before starting their high periods. Figure 15−14 illustrates the
clock synchronization. This allows a slow slave to slow down a fast master.

Figure 15−14. Synchronization of Two I2C Clock Generators During Arbitration
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15.2.7 Using the I 2C Module with Low Power Modes

The I2C module can be used with MSP430 low-power modes. When the
internal clock source for the I2C module is present, the module operates
normally regardless of the MSP430 operating mode. When the internal clock
source for the I2C module is not present, automatic clock activation is
provided. When the I2C module is in the idle state, I2CBUSY = 0, and the I2C
clock source I2CIN is disconnected from the I2C module state machine, saving
power.

When the I2C clock source is inactive, the I2C module automatically activates
the selected clock source when needed, regardless of the control-bit settings
for the clock source. The clock source remains active until the I2C module
returns to idle condition. After the I2C module returns to the idle condition,
control of the clock-source reverts to the settings of its control bits.

Automatic I2C clock activation occurs when:

� In master mode, clock activation occurs when I2CSTT = 1 and remains
active until the transfer completes and the I2C module returns to the idle
condition.

� In slave mode, clock activation occurs when a START condition is
detected and remains active until the transfer completes and the I2C
module returns to the idle condition. After detection of the START
condition, the STTIFG flag is set, and the module holds the SCL line low
until the clock source becomes active. Once the source is active, the I2C
module releases the SCL line to the master.

When the I2C module activates an inactive clock source, the clock source
becomes active for the whole device and any peripheral configured to use the
clock source may be affected. For example, a timer using SMCLK will
increment while the I2C module forces SMCLK active.



I2C Module Operation

15-18 USART Peripheral Interface, I2C Mode

15.2.8 I2C Interrupts

The I2C module has one interrupt vector for eight interrupt flags listed in Table
15−3. Each interrupt flag has its own interrupt enable bit. When an interrupt
is enabled, and the GIE bit is set, the interrupt flag will generate an interrupt
request.

Table 15−3.I2C Interrupts

Interrupt
Flag

Interrupt Condition

ALIFG Arbitration-lost. Arbitration can be lost when two or more transmitters
start a transmission simultaneously, or when the software attempts
to initiate an I2C transfer while I2CBB = 1. The ALIFG flag is set when
arbitration has been lost. When ALIFG is set the MST and I2CSTP
bits are cleared and the I2C controller becomes a slave receiver.

NACKIFG No-acknowledge interrupt. This flag is set when an acknowledge is
expected but is not received in master mode. NACKIFG is used in
master mode only.

OAIFG Own-address interrupt. This flag is set when another master has
addressed the I2C module. OAIFG is used in slave mode only.

ARDYIFG Register-access-ready interrupt. This flag is set as described for the
below conditions.
Master transmitter, I2CRM = 0: All data sent
Master transmitter, I2CRM = 1: All data sent and I2CSTP set
Master receiver, I2CRM = 0: I2CNDAT number of bytes received and
all data read from I2CDR
Master receiver, I2CRM = 1: Last byte of data received, I2CSTP set,
and all data read from I2CDR
Slave transmitter: STOP condition detected
Slave receiver: STOP condition detected and all data read from
I2CDR

RXRDYIFG Receive ready interrupt/status. This flag is set when the I2C module
has received new data. RXRDYIFG is automatically cleared when
I2CDR is read and the receive buffer is empty. A receiver overrun is
indicated if bit I2CRXOVR = 1. RXRDYIFG is used in receive mode
only.

TXRDYIFG Transmit ready interrupt/status. This flag is set when the I2C module
is ready for new transmit data (master transmit mode) or when
another master is requesting data (slave transmit mode). TXRDYIFG
is automatically cleared when I2CDR and the transmit buffer are full.
A transmit underflow is indicated if I2CTXUDF = 1. Unused in receive
mode.

GCIFG General call interrupt. This flag is set when the I2C module received
the general call address (00h). GCIFG is used in receive mode only.

STTIFG START condition detected interrupt. This flag is set when the I2C
module detects a START condition while in slave mode. This allows
the MSP430 to be in a low power mode with the I2C clock source
inactive until a master initiates I2C communication. STTIFG is used
in slave mode only.
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I2CIV, Interrupt Vector Generator

The I2C interrupt flags are prioritized and combined to source a single interrupt
vector. The interrupt vector register I2CIV is used to determine which flag
requested an interrupt. The highest priority enabled interrupt generates a
number in the I2CIV register that can be evaluated or added to the program
counter to automatically enter the appropriate software routine. Disabled I2C
interrupts do not affect the I2CIV value. When RXDMAEN = 1, RXRDYIFG will
not affect the I2CIV value and when TXDMAEN = 1, TXRDYIFG will not affect
the I2CIV value, regardless of the state of RXRDYIE or TXRDYIE.

Any access, read or write, of the I2CIV register automatically resets the highest
pending interrupt flag. If another interrupt flag is set, another interrupt is
immediately generated after servicing the initial interrupt.

I2CIV Software Example

The following software example shows the recommended use of I2CIV. The
I2CIV value is added to the PC to automatically jump to the appropriate routine.

I2C_ISR
ADD &I2CIV, PC ; Add offset to jump table
RETI ; Vector 0: No interrupt
JMP ALIFG_ISR ; Vector 2: ALIFG
JMP NACKIFG_ISR ; Vector 4: NACKIFG
JMP OAIFG_ISR ; Vector 6: OAIFG
JMP ARDYIFG_ISR ; Vector 8: ARDYIFG
JMP RXRDYIFG_ISR ; Vector 10: RXRDYIFG
JMP TXRDYIFG_ISR ; Vector 12: TXRDYIFG
JMP GCIFG_ISR ; Vector 14: GCIFG

STTIFG_ISR ; Vector 16
... ; Task starts here
RETI ; Return

ALIFG_ISR ; Vector 2
... ; Task starts here
RETI ; Return

NACKIFG_ISR ; Vector 4
... ; Task starts here
RETI ; Return

OAIFG_ISR ; Vector 6
... ; Task starts here
RETI ; Return

ARDYIFG_ISR ; Vector 8
... ; Task starts here
RETI ; Return

RXRDYIFG_ISR ; Vector 10
... ; Task starts here
RETI ; Return

TXRDYIFG_ISR ; Vector 12
... ; Task starts here
RETI ; Return

GCIFG_ISR ; Vector 14
... ; Task starts here
RETI ; Return
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15.3 I2C Module Registers

The I2C module registers are listed in Table 15−4.

Table 15−4.I2C Registers

Register Short Form Register Type Address Initial State

I2C interrupt enable I2CIE Read/write 050h Reset with PUC

I2C interrupt flag I2CIFG Read/write 051h Reset with PUC

I2C data count I2CNDAT Read/write 052h Reset with PUC

USART control U0CTL Read/write 070h 001h with PUC

I2C transfer control I2CTCTL Read/write 071h Reset with PUC

I2C data control I2CDCTL Read only 072h Reset with PUC

I2C prescaler I2CPSC Read/write 073h Reset with PUC

I2C SCL high I2CSCLH Read/write 074h Reset with PUC

I2C SCL low I2CSCLL Read/write 075h Reset with PUC

I2C data I2CDRW/I2CDRB Read/write 076h Reset with PUC

I2C own address I2COA Read/write 0118h Reset with PUC

I2C slave address I2CSA Read/write 011Ah Reset with PUC

I2C interrupt vector I2CIV Read only 011Ch Reset with PUC
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U0CTL, USART0 Control Register-I 2C Mode

7 6 5 4 3 2 1 0

RXDMAEN TXDMAEN I2C XA LISTEN SYNC MST I2CEN

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−1

RXDMAEN Bit 7 Receive DMA enable. This bit enables the DMA controller to be used to
transfer data from the I2C module after the I2C modules receives data. When
RXDMAEN = 1, RXRDYIE is ignored.
0 Disabled
1 Enabled

TXDMAEN Bit 6 Transmit DMA enable. This bit enables the DMA controller to be used to
provide data to the I2C module for transmission. When TXDMAEN = 1,
TXRDYIE, is ignored.
0 Disabled
1 Enabled

I2C Bit 5 I2C mode enable. This bit select I2C or SPI operation when SYNC = 1.
0 SPI mode
1 I2C mode

XA Bit 4 Extended Addressing
0 7-bit addressing
1 10-bit addressing

LISTEN Bit 3 Listen. This bit selects loopback mode. LISTEN is only valid when MST = 1
and I2CTRX = 1 (master transmitter).
0 Normal mode
1 SDA is internally fed back to the receiver (loopback).

SYNC Bit 2 Synchronous mode enable
0 UART mode
1 SPI or I2C mode

MST Bit 1 Master. This bit selects master or slave mode. The MST bit is automatically
cleared when arbitration is lost or a STOP condition is generated.
0 Slave mode
1 Master mode

I2CEN Bit 0 I2C enable. The bit enables or disables the I2C module. The initial condition
for this bit is set, and SWRST function for UART or SPI. When the I2C and
SYNC bits are first set after a PUC, this bit becomes I2CEN function and is
automatically cleared.
0 I2C operation is disabled
1 I2C operation is enabled
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I2CTCTL, I2C Transmit Control Register

7 6 5 4 3 2 1 0

I2CWORD I2CRM I2CSSELx I2CTRX I2CSTB I2CSTP I2CSTT

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Modifiable only when I2CEN = 0

I2CWORD Bit 7 I2C word mode. Selects byte or word mode for the I2C data register.
0 Byte mode
1 Word mode

I2CRM Bit 6 I2C repeat mode
0 I2CNDAT defines the number of bytes transmitted.
1 Number of bytes transmitted is controlled by software. I2CNDAT is

unused.

I2CSSELx Bits
5−4

I2C clock source select. When MST = 1 and arbitration is lost, the external SCL
signal is automatically used.
00 No clock − I2C module is inactive
01 ACLK
10 SMCLK
11 SMCLK

I2CTRX Bit 3 I2C transmit. This bit selects the transmit or receive function for the I2C
controller when MST = 1. When MST = 0, the R/W bit of the address byte
defines the data direction. I2CTRX must be reset for proper slave mode
operation.
0 Receive mode. Data is received on the SDA pin.
1 Transmit mode. Data transmitted on the SDA pin.

I2CSTB Bit 2 Start byte. Setting the I2CSTB bit when MST = 1 initiates a start byte when
I2CSTT = 1. After the start byte is initiated, I2CSTB is automatically cleared.
0: No action
1: Send START condition and start byte (01h), but no STOP condition.

I2CSTP Bit 1 STOP bit. This bit is used to generate STOP condition. After the STOP
condition, the I2CSTP is automatically cleared.
0: No action
1: Send STOP condition

I2CSTT Bit 0 START bit. This bit is used to generate a START condition. After the start
condition the I2CSTT is automatically cleared.
0: No action
1: Send START condition
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I2CDCTL, I2C Data Control Register

7 6 5 4 3 2 1 0

Unused Unused I2CBUSY I2C
SCLLOW I2CSBD I2CTXUDF I2CRXOVR I2CBB

r0 r0 r−0 r−0 r−0 r−0 r−0 r−0

Unused Bits
7−6

Unused. Always read as 0.

I2CBUSY Bit 5 I2C busy
0 I2C module is idle
1 I2C module is not idle

I2C
SCLLOW

Bit 4 I2C SCL low. This bit indicates if a slave is holding the SCL line low while the
MSP430 is the master and is unused in slave mode.
0 SCL is not being held low
1 SCL is being held low

I2CSBD Bit 3 I2C single byte data. This bit indicates if the receive register I2CDRW holds
a word or a byte. I2CSBD is valid only when I2CWORD = 1.
0 A complete word was received
1 Only the lower byte in I2CDR is valid

I2CTXUDF Bit 2 I2C transmit underflow
0 No underflow occurred
1 Transmit underflow occurred

I2CRXOVR Bit 1 I2C receive overrun
0 No receive overrun occurred
1 Receiver overrun occurred

I2CBB Bit 0 I2C bus busy bit. A START condition sets I2CBB to 1. I2CBB is reset by a
STOP condition or when I2CEN=0.
0 I2C bus not busy
1 I2C bus busy
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I2CDRW, I2CDRB, I2C Data Register

15 14 13 12 11 10 9 8

I2CDRW High Byte

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

7 6 5 4 3 2 1 0

I2CDRW Low Byte
I2CDRB

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

I2CDRW/
I2CDRB

Bits
15−8

I2C Data. When I2CWORD = 1, the register name is I2CDRW. When
I2CWORD = 0, the name is I2CDRB. When I2CWORD = 1, any attempt to
modify the register with a byte instruction will fail and the register will not be
updated.

I2CNDAT, I2C Transfer Byte Count  Register

7 6 5 4 3 2 1 0

I2CNDATx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

I2CNDATx Bits
7−0

I2C number of bytes. This register supports automatic data byte counting for
master mode. In word mode, I2CNDATx must be an even value.
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I2CPSC, I2C Clock Prescaler Register

7 6 5 4 3 2 1 0

I2CPSCx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Modifiable only when I2CEN = 0

I2CPSCx Bits
7−0

I2C clock prescaler. The I2C clock input I2CIN is divided by the I2CPSCx value
to produce the internal I2C clock frequency. The division rate is I2CPSCx+1.
I2CPSCx values > 4 are not recommended. The I2CSCLL and I2CSCLH
registers should be used to set the SCL frequency.
000h Divide by 1
001h Divide by 2
:
0FFh Divide by 256
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I2CSCLH, I2C Shift Clock High Register

7 6 5 4 3 2 1 0

I2CSCLHx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Modifiable only when I2CEN = 0

I2CSCLHx Bits
7−0

I2C shift clock high. These bits define the high period of SCL when the I2C
controller is in master mode. The SCL high period is (I2CSCLH+2) x (I2CPSC
+ 1).
000h SCL high period = 5 x (I2CPSC + 1)
001h SCL high period = 5 x (I2CPSC + 1)
002h SCL high period = 5 x (I2CPSC + 1)
003h SCL high period = 5 x (I2CPSC + 1)
004h SCL high period = 6 x (I2CPSC + 1)
:
0FFh SCL high period = 257 x (I2CPSC + 1)

I2CSCLL, I2C Shift Clock Low Register

7 6 5 4 3 2 1 0

I2CSCLLx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Modifiable only when I2CEN = 0

I2CSCLLx Bits
7−0

I2C shift clock low. These bits define the low period of SCL when the I2C
controller is in master mode. The SCL low period is (I2CSCLL+2) x (I2CPSC
+ 1).
000h SCL low period = 5 x (I2CPSC + 1)
001h SCL low period = 5 x (I2CPSC + 1)
002h SCL low period = 5 x (I2CPSC + 1)
003h SCL low period = 5 x (I2CPSC + 1)
004h SCL low period = 6 x (I2CPSC + 1)
:
0FFh SCL low period = 257 x (I2CPSC + 1)
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I2COA, I2C Own Address Register, 7-Bit Addressing Mode

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 I2COAx

r0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Modifiable only when I2CEN = 0

I2COAx Bits
15-0

I2C own address. The I2COA register contains the local address of the
MSP430 I2C controller. The I2COA register is right-justified. Bit 6 is the MSB.
Bits 15-7 are always 0.

I2COA, I2C Own Address Register, 10-Bit Addressing Mode

15 14 13 12 11 10 9 8

0 0 0 0 0 0 I2COAx

r0 r0 r0 r0 r0 r0 rw−0 rw−0

7 6 5 4 3 2 1 0

I2COAx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

Modifiable only when I2CEN = 0

I2COAx Bits
15-0

I2C own address. The I2COA register contains the local address of the
MSP430 I2C controller. The I2COA register is right-justified. Bit 9 is the MSB.
Bits 15-10 are always 0.
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I2CSA, I2C Slave Address Register, 7-Bit Addressing Mode

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 I2CSAx

r0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

I2CSAx Bits
15-0

I2C slave address. The I2CSA register contains the slave address of the
external device to be addressed by the MSP430. It is only used in master
mode. The I2CSA register is right-justified. Bit 6 is the MSB. Bits 15-7 are
always 0.

I2CSA, I2C Slave Address Register, 10-Bit Addressing Mode

15 14 13 12 11 10 9 8

0 0 0 0 0 0 I2CSAx

r0 r0 r0 r0 r0 r0 rw−0 rw−0

7 6 5 4 3 2 1 0

I2CSAx

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

I2CSAx Bits
15-0

I2C slave address. The I2CSA register contains the slave address of the
external device to be addressed by the MSP430. It is only used in master
mode. The I2CSA register is right-justified. Bit 9 is the MSB. Bits 15-10 are
always 0.
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I2CIE, I2C Interrupt Enable Register

7 6 5 4 3 2 1 0

STTIE GCIE TXRDYIE RXRDYIE ARDYIE OAIE NACKIE ALIE

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

STTIE Bit 7 START detect interrupt enable
0 Interrupt disabled
1 Interrupt enabled

GCIE Bit 6 General call interrupt enable
0 Interrupt disabled
1 Interrupt enabled

TXRDYIE Bit 5 Transmit ready interrupt enable. When TXDMAEN = 1, TXRDYIE is ignored
and TXRDYIFG will not generate an interrupt.
0 Interrupt disabled
1 Interrupt enabled

RXRDYIE Bit 4 Receive ready interrupt enable. When RXDMAEN = 1, RXRDYIE is ignored
and RXRDYIFG will not generate an interrupt.
0 Interrupt disabled
1 Interrupt enabled

ARDYIE Bit 3 Access ready interrupt enable
0 Interrupt disabled
1 Interrupt enabled

OAIE Bit 2 Own address interrupt enable
0 Interrupt disabled
1 Interrupt enabled

NACKIE Bit 1 No acknowledge interrupt enable
0 Interrupt disabled
1 Interrupt enabled

ALIE Bit 0 Arbitration lost interrupt enable
0 Interrupt disabled
1 Interrupt enabled
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I2CIFG, I2C Interrupt Flag Register

7 6 5 4 3 2 1 0

STTIFG GCIFG TXRDYIFG RXRDYIFG ARDYIFG OAIFG NACKIFG ALIFG

rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0 rw−0

STTIFG Bit 7 START detect interrupt flag
0 No interrupt pending
1 Interrupt pending

GCIFG Bit 6 General call interrupt flag
0 No interrupt pending
1 Interrupt pending

TXRDYIFG Bit 5 Transmit ready interrupt flag
0 No interrupt pending
1 Interrupt pending

RXRDYIFG Bit 4 Receive ready interrupt flag
0 No interrupt pending
1 Interrupt pending

ARDYIFG Bit 3 Access ready interrupt flag
0 No interrupt pending
1 Interrupt pending

OAIFG Bit 2 Own address interrupt flag
0 No interrupt pending
1 Interrupt pending

NACKIFG Bit 1 No acknowledge interrupt flag
0 No interrupt pending
1 Interrupt pending

ALIFG Bit 0 Arbitration lost interrupt flag
0 No interrupt pending
1 Interrupt pending
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I2CIV, I2C Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 0 I2CIVx 0

r0 r0 r0 r−0 r−0 r−0 r−0 r0

I2CIVx Bits
15-0

I2C interrupt vector value

I2CIV 
Contents Interrupt Source

Interrupt
Flag

Interrupt
Priority

000h No interrupt pending −

002h Arbitration lost ALIFG Highest

004h No acknowledgement NACKIFG

006h Own address OAIFG

008h Register access ready ARDYIFG

00Ah Receive data ready RXRDYIFG

00Ch Transmit data ready TXRDYIFG

00Eh General call GCIFG

010h START condition received STTIFG Lowest
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Comparator_A is an analog voltage comparator. This chapter describes
Comparator_A. Comparator_A is implemented in MSP430x11x1,
MSP430x12x, MSP430x13x, MSP430x14x, MSP430x15x and MSP430x16x
devices.
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16.1 Comparator_A Introduction

The comparator_A module supports precision slope analog-to-digital
conversions, supply voltage supervision, and monitoring of external analog
signals.

Features of Comparator_A include:

� Inverting and non-inverting terminal input multiplexer

� Software selectable RC-filter for the comparator output

� Output provided to Timer_A capture input

� Software control of the port input buffer

� Interrupt capability

� Selectable reference voltage generator

� Comparator and reference generator can be powered down

The Comparator_A block diagram is shown in Figure 16−1.
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Figure 16−1. Comparator_A Block Diagram
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16.2 Comparator_A Operation 

The comparator_A module is configured with user software. The setup and
operation of comparator_A is discussed in the following sections.

16.2.1 Comparator

The comparator compares the analog voltages at the + and – input terminals.
If the + terminal is more positive than the – terminal, the comparator output
CAOUT is high. The comparator can be switched on or off using control bit
CAON. The comparator should be switched off when not in use to reduce
current consumption. When the comparator is switched off, the CAOUT is
always low.

16.2.2 Input Analog Switches

The analog input switches connect or disconnect the two comparator input
terminals to associated port pins using the P2CAx bits. Both comparator
terminal inputs can be controlled individually. The P2CAx bits allow:

� Application of an external signal to the + and – terminals of the comparator

� Routing of an internal reference voltage to an associated output port pin

Internally, the input switch is constructed as a T-switch to suppress distortion
in the signal path.

Note: Comparator Input Connection

When the comparator is on, the input terminals should be connected to a
signal, power, or ground. Otherwise, floating levels may cause unexpected
interrupts and increased current consumption.

The CAEX bit controls the input multiplexer, exchanging which input signals
are connected to the comparator’s + and – terminals. Additionally, when the
comparator terminals are exchanged, the output signal from the comparator
is inverted. This allows the user to determine or compensate for the
comparator input offset voltage.
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16.2.3 Output Filter

The output of the comparator can be used with or without internal filtering.
When control bit CAF is set, the output is filtered with an on-chip RC-filter.

Any comparator output oscillates if the voltage difference across the input
terminals is small. Internal and external parasitic effects and cross coupling on
and between signal lines, power supply lines, and other parts of the system
are responsible for this behavior as shown in Figure 16−2. The comparator
output oscillation reduces accuracy and resolution of the comparison result.
Selecting the output filter can reduce errors associated with comparator
oscillation.

Figure 16−2. RC-Filter Response at the Output of the Comparator

+ Terminal

− Terminal Comparator Inputs

Comparator Output
Unfiltered at CAOUT

Comparator Output
Filtered at CAOUT

16.2.4 Voltage Reference Generator

The voltage reference generator is used to generate VCAREF,  which can be
applied to either comparator input terminal. The CAREFx bits control the
output of the voltage generator. The CARSEL bit selects the comparator
terminal to which VCAREF is applied. If external signals are applied to both
comparator input terminals, the internal reference generator should be turned
off to reduce current consumption. The voltage reference generator can
generate a fraction of the device’s VCC or a fixed transistor threshold voltage
of ~ 0.55 V.
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16.2.5 Comparator_A, Port Disable Register CAPD

The comparator input and output functions are multiplexed with the associated
I/O port pins, which are digital CMOS gates. When analog signals are applied
to digital CMOS gates, parasitic current can flow from VCC to GND. This
parasitic current occurs if the input voltage is near the transition level of the
gate. Disabling the port pin buffer eliminates the parasitic current flow and
therefore reduces overall current consumption.

The CAPDx bits, when set, disable the corresponding P2 input buffer as shown
in Figure 16−3. When current consumption is critical, any P2 pin connected to
analog signals should be disabled with their associated CAPDx bit.

Figure 16−3. Transfer Characteristic and Power Dissipation in a CMOS Inverter/Buffer

VCC

VSS

ICCVOVI

0 VCC

VIVCC

ICC

CAPD.x = 1

16.2.6 Comparator_A Interrupts

One interrupt flag and one interrupt vector are associated with the
Comparator_A as shown in Figure 16−4. The interrupt flag CAIFG is set on
either the rising or falling edge of the comparator output, selected by the
CAIES bit. If both the CAIE and the GIE bits are set, then the CAIFG flag
generates an interrupt request. The CAIFG flag is automatically reset when
the interrupt request is serviced or may be reset with software.

Figure 16−4. Comparator_A Interrupt System
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16.2.7 Comparator_A Used to Measure Resistive Elements

The Comparator_A can be optimized to precisely measure resistive elements
using single slope analog-to-digital conversion. For example, temperature can
be converted into digital data using a thermistor, by comparing the thermistor’s
capacitor discharge time to that of a reference resistor as shown in
Figure 16−5. A reference resister Rref is compared to Rmeas.

Figure 16−5. Temperature Measurement System

+

−

CA0 CCI1B
Capture
Input
Of Timer_A

+

−

Rmeas

Rref
Px.x

Px.y

0.25xVCC

The MSP430 resources used to calculate the temperature sensed by Rmeas
are:

� Two digital I/O pins to charge and discharge the capacitor.

� I/O set to output high (VCC) to charge capacitor, reset to discharge.

� I/O switched to high-impedance input with CAPDx set when not in use.

� One output charges and discharges the capacitor via Rref.

� One output discharges capacitor via Rmeas.

� The + terminal is connected to the positive terminal of the capacitor.

� The – terminal is connected to a reference level, for example 0.25 x VCC.

� The output filter should be used to minimize switching noise.

� CAOUT used to gate Timer_A CCI1B, capturing capacitor discharge time.

More than one resistive element can be measured. Additional elements are
connected to CA0 with available I/O pins and switched to high impedance
when not being measured.
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The thermistor measurement is based on a ratiometric conversion principle.
The ratio of two capacitor discharge times is calculated as shown in
Figure 16−6.

Figure 16−6. Timing for Temperature Measurement Systems
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The VCC voltage and the capacitor value should remain constant during the
conversion, but are not critical since they cancel in the ratio:

Nmeas
Nref

�

–Rmeas � C � ln
Vref
VCC

–Rref � C � ln
Vref
VCC

Nmeas
Nref

�
Rmeas

Rref

Rmeas � Rref �
Nmeas

Nref
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16.3 Comparator_A Registers

The Comparator_A registers are listed in Table 16−1:

Table 16−1.Comparator_A Registers

Register Short Form Register Type Address Initial State

Comparator_A control register 1 CACTL1 Read/write 059h Reset with POR

Comparator_A control register 2 CACTL2 Read/write 05Ah Reset with POR

Comparator_A port disable CAPD Read/write 05Bh Reset with POR
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CACTL1, Comparator_A Control Register 1

7 6 5 4 3 2 1 0

CAEX CARSEL CAREFx CAON CAIES CAIE CAIFG

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

CAEX Bit 7 Comparator_A exchange. This bit exchanges the comparator inputs and
inverts the comparator output.

CARSEL Bit 6 Comparator_A reference select. This bit selects which terminal the VCAREF
is applied to.
When CAEX = 0:
0 VCAREF is applied to the + terminal
1 VCAREF is applied to the – terminal
When CAEX = 1:
0 VCAREF is applied to the – terminal
1 VCAREF is applied to the + terminal

CAREF Bits
5-4

Comparator_A reference. These bits select the reference voltage VCAREF.
00 Internal reference off. An external reference can be applied.
01 0.25*VCC
10 0.50*VCC
11 Diode reference is selected

CAON Bit 3 Comparator_A on. This bit turns on the comparator. When the comparator
is off it consumes no current. The reference circuitry is enabled or disabled
independently.
0 Off
1 On

CAIES Bit 2 Comparator_A interrupt edge select
0 Rising edge
1 Falling edge

CAIE Bit 1 Comparator_A interrupt enable
0 Disabled
1 Enabled

CAIFG Bit 0 The Comparator_A interrupt flag
0 No interrupt pending
1 Interrupt pending
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CACTL2, Comparator_A, Control Register

7 6 5 4 3 2 1 0

Unused P2CA1 P2CA0 CAF CAOUT

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−(0)

Unused Bits
7-4

Unused.

P2CA1 Bit 3 Pin to CA1. This bit selects the CA1 pin function.
0 The pin is not connected to CA1
1 The pin is connected to CA1

P2CA0 Bit 2 Pin to CA0. This bit selects the CA0 pin function.
0 The pin is not connected to CA0
1 The pin is connected to CA0

CAF Bit 1 Comparator_A output filter
0 Comparator_A output is not filtered
1 Comparator_A output is filtered

CAOUT Bit 0 Comparator_A output. This bit reflects the value of the comparator output.
Writing this bit has no effect.

CAPD, Comparator_A, Port Disable Register

7 6 5 4 3 2 1 0

CAPD7 CAPD6 CAPD5 CAPD4 CAPD3 CAPD2 CAPD1 CAPD0

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

CAPDx Bits
7-0

Comparator_A port disable. These bits individually disable the input buffer
for the pins of the port associated with Comparator_A. For example, if CA0
is on pin P2.3, the CAPDx bits can be used to individually enable or
disable each P2.x pin buffer. CAPD0 disables P2.0, CAPD1 disables P2.1,
etc.
0 The input buffer is enabled.
1 The input buffer is disabled.
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The ADC12 module is a high-performance 12-bit analog-to-digital converter.
This chapter describes the ADC12. The ADC12 is implemented in the
MSP430x13x, MSP430x14x, MSP430x15x, and MSP430x16x devices.
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17.1 ADC12 Introduction

The ADC12 module supports fast, 12-bit analog-to-digital conversions. The
module implements a 12-bit SAR core, sample select control, reference
generator and a 16 word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be
converted and stored without any CPU intervention.

ADC12 features include:

� Greater than 200 ksps maximum conversion rate

� Monotonic 12-bit converter with no missing codes

� Sample-and-hold with programmable sampling periods controlled by
software or timers.

� Conversion initiation by software, Timer_A, or Timer_B

� Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)

� Software selectable internal or external reference

� Eight individually configurable external input channels

� Conversion channels for internal temperature sensor, AVCC, and external
references

� Independent channel-selectable reference sources for both positive and
negative references

� Selectable conversion clock source

� Single-channel, repeat-single-channel, sequence, and repeat-sequence
conversion modes

� ADC core and reference voltage can be powered down separately

� Interrupt vector register for fast decoding of 18 ADC interrupts

� 16 conversion-result storage registers

The block diagram of ADC12 is shown in Figure 17−1.
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Figure 17−1. ADC12 Block Diagram
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17.2 ADC12 Operation

The ADC12 module is configured with user software. The setup and operation
of the ADC12 is discussed in the following sections.

17.2.1 12-Bit ADC Core

The ADC core converts an analog input to its 12-bit digital representation and
stores the result in conversion memory. The core uses two
programmable/selectable voltage levels (VR+ and VR−) to define the upper and
lower limits of the conversion. The digital output (NADC) is full scale (0FFFh)
when the input signal is equal to or higher than VR+, and zero when the input
signal is equal to or lower than VR−. The input channel and the reference
voltage levels (VR+ and VR−) are defined in the conversion-control memory.
The conversion formula for the ADC result NADC is:

NADC � 4095 �
Vin � VR�

VR�
� VR�

The ADC12 core is configured by two control registers, ADC12CTL0 and
ADC12CTL1. The core is enabled with the ADC12ON bit. The ADC12 can be
turned off when not in use to save power. With few exceptions the ADC12
control bits can only be modified when ENC = 0. ENC must be set to 1 before
any conversion can take place.

Conversion Clock Selection

The ADC12CLK is used both as the conversion clock and to generate the
sampling period when the pulse sampling mode is selected. The ADC12
source clock is selected using the ADC12SSELx bits and can be divided from
1-8 using the ADC12DIVx bits. Possible ADC12CLK sources are SMCLK,
MCLK, ACLK, and an internal oscillator ADC12OSC.

The ADC12OSC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
datasheet for the ADC12OSC specification.

The user must ensure that the clock chosen for ADC12CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete and any result will be invalid.
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17.2.2 ADC12 Inputs and Multiplexer

The eight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 17−2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (AVSS) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC12 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Figure 17−2. Analog Multiplexer

R ~ 100 Ohm

ESD Protection

ADC12MCTLx.0−3

Input
Ax

Analog Port Selection

The ADC12 inputs are multiplexed with the port P6 pins, which are digital
CMOS gates. When analog signals are applied to digital CMOS gates,
parasitic current can flow from VCC to GND. This parasitic current occurs if the
input voltage is near the transition level of the gate. Disabling the port pin buffer
eliminates the parasitic current flow and therefore reduces overall current
consumption. The P6SELx bits provide the ability to disable the port pin input
and output buffers.

; P6.0 and P6.1 configured for analog input

BIS.B #3h,&P6SEL ; P6.1 and P6.0 ADC12 function
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17.2.3 Voltage Reference Generator

The ADC12 module contains a built-in voltage reference with two selectable
voltage levels, 1.5 V and 2.5 V. Either of these reference voltages may be used
internally and externally on pin VREF+.

Setting REFON=1 enables the internal reference. When REF2_5V = 1, the
internal reference is 2.5 V, the reference is 1.5 V when REF2_5V = 0. The
reference can be turned off to save power when not in use.

For proper operation the internal voltage reference generator must be
supplied with storage capacitance across VREF+ and AVSS. The recommended
storage capacitance is a parallel combination of 10-µF and 0.1-µF capacitors.
From turn-on, a maximum of 17 ms must be allowed for the voltage reference
generator to bias the recommended storage capacitors. If the internal
reference generator is not used for the conversion, the storage capacitors are
not required.

Note: Reference Decoupling

Approximately 200 µA is required from any reference used by the ADC12
while the two LSBs are being resolved during a conversion. A parallel
combination of 10-µF and 0.1-µF capacitors is recommended for any
reference used as shown in Figure 17−11.

External references may be supplied for VR+ and VR− through pins VeREF+ and
VREF−/VeREF− respectively.

17.2.4 Auto Power-Down

The ADC12 is designed for low power applications. When the ADC12 is not
actively converting, the core is automatically disabled and automatically
re-enabled when needed. The ADC12OSC is also automatically enabled
when needed and disabled when not needed. The reference is not
automatically disabled, but can be disabled by setting REFON = 0. When the
core, oscillator, or reference are disabled, they consume no current.



ADC12 Operation

17-7ADC12

17.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of the sample
input signal SHI. The source for SHI is selected with the SHSx bits and
includes the following:

� The ADC12SC bit
� The Timer_A Output Unit 1
� The Timer_B Output Unit 0
� The Timer_B Output Unit 1

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SAMPCON signal controls the sample period and start of conversion. When
SAMPCON is high, sampling is active. The high-to-low SAMPCON transition
starts the analog-to-digital conversion, which requires 13 ADC12CLK cycles.
Two different sample-timing methods are defined by control bit SHP, extended
sample mode and pulse mode.

Extended Sample Mode

The extended sample mode is selected when SHP = 0. The SHI signal directly
controls SAMPCON and defines the length of the sample period tsample. When
SAMPCON is high, sampling is active. The high-to-low SAMPCON transition
starts the conversion after synchronization with ADC12CLK. See Figure 17−3.

Figure 17−3. Extended Sample Mode
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Pulse Sample Mode

The pulse sample mode is selected when SHP = 1. The SHI signal is used to
trigger the sampling timer. The SHT0x and SHT1x bits in ADC12CTL0 control
the interval of the sampling timer that defines the SAMPCON sample period
tsample. The sampling timer keeps SAMPCON high after synchronization with
AD12CLK for a programmed interval tsample. The total sampling time is tsample
plus tsync. See Figure 17−4.

The SHTx bits select the sampling time in 4x multiples of ADC12CLK. SHT0x
selects the sampling time for ADC12MCTL0 to 7 and SHT1x selects the
sampling time for ADC12MCTL8 to 15.

Figure 17−4. Pulse Sample Mode
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Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON =
1, the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tsample, as shown below in Figure 17−5. An internal MUX-on
input resistance RI (max. 2 kΩ) in series with capacitor CI (max. 40 pF) is seen
by the source. The capacitor CI voltage VC must be charged to within ��� LSB
of the source voltage VS for an accurate 12-bit conversion.

Figure 17−5. Analog Input Equivalent Circuit

RS RI
VS VC

MSP430

CI

VI

VI = Input voltage at pin Ax
VS = External source voltage
RS= External source resistance 
RI = Internal MUX-on input resistance
CI = Input capacitance
VC= Capacitance-charging voltage

The resistance of the source RS and RI affect tsample. The following equation
can be used to calculate the minimum sampling time tsample for a 12-bit
conversion:

tsample � (RS � RI) � ln(213) � CI � 800ns

Substituting the values for RI and CI given above, the equation becomes:

tsample � (RS � 2k�) � 9.011 � 40pF � 800ns

For example, if RS is 10 kΩ, tsample must be greater than 5.13 µs.
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17.2.6 Conversion Memory

There are 16 ADC12MEMx conversion memory registers to store conversion
results. Each ADC12MEMx is configured with an associated ADC12MCTLx
control register. The SREFx bits define the voltage reference and the INCHx
bits select the input channel. The EOS bit defines the end of sequence when
a sequential conversion mode is used. A sequence rolls over from
ADC12MEM15 to ADC12MEM0 when the EOS bit in ADC12MCTL15 is not
set.

The CSTARTADDx bits define the first ADC12MCTLx used for any
conversion. If the conversion mode is single-channel or repeat-single-channel
the CSTARTADDx points to the single ADC12MCTLx to be used.

If the conversion mode selected is either sequence-of-channels or
repeat-sequence-of-channels, CSTARTADDx points to the first
ADC12MCTLx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLx in a
sequence when each conversion completes. The sequence continues until an
EOS bit in ADC12MCTLx is processed - this is the last control byte processed.

When conversion results are written to a selected ADC12MEMx, the
corresponding flag in the ADC12IFGx register is set.

17.2.7 ADC12 Conversion Modes

The ADC12 has four operating modes selected by the CONSEQx bits as
discussed in Table 17−1.

Table 17−1.Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel
single-conversion

A single channel is converted once.

01 Sequence-of-
channels

A sequence of channels is converted once.

10 Repeat-single-
channel

A single channel is converted repeatedly.

11 Repeat-sequence-
of-channels

A sequence of channels is converted
repeatedly.
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Single-Channel Single-Conversion Mode

A single channel is sampled and converted once. The ADC result is written to
the ADC12MEMx defined by the CSTARTADDx bits. Figure 17−6 shows the
flow of the Single-Channel, Single-Conversion mode. When ADC12SC
triggers a conversion, successive conversions can be triggered by the
ADC12SC bit. When any other trigger source is used, ENC must be toggled
between each conversion.

Figure 17−6. Single-Channel, Single-Conversion Mode
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Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The ADC results are
written to the conversion memories starting with the ADCMEMx defined by the
CSTARTADDx bits. The sequence stops after the measurement of the
channel with a set EOS bit. Figure 17−7 shows the sequence-of-channels
mode. When ADC12SC triggers a sequence, successive sequences can be
triggered by the ADC12SC bit. When any other trigger source is used, ENC
must be toggled between each sequence.

Figure 17−7. Sequence-of-Channels Mode
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Repeat-Single-Channel Mode

A single channel is sampled and converted continuously. The ADC results are
written to the ADC12MEMx defined by the CSTARTADDx bits. It is necessary
to read the result after the completed conversion because only one
ADC12MEMx memory is used and is overwritten by the next conversion.
Figure 17−8 shows repeat-single-channel mode

Figure 17−8. Repeat-Single-Channel Mode
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Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The ADC
results are written to the conversion memories starting with the ADC12MEMx
defined by the CSTARTADDx bits. The sequence ends after the measurement
of the channel with a set EOS bit and the next trigger signal re-starts the
sequence. Figure 17−9 shows the repeat-sequence-of-channels mode.

Figure 17−9. Repeat-Sequence-of-Channels Mode
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Using the Multiple Sample and Convert (MSC) Bit

To configure the converter to perform successive conversions automatically
and as quickly as possible, a multiple sample and convert function is available.
When MSC = 1, CONSEQx > 0, and the sample timer is used, the first rising
edge of the SHI signal triggers the first conversion. Successive conversions
are triggered automatically as soon as the prior conversion is completed.
Additional rising edges on SHI are ignored until the sequence is completed in
the single-sequence mode or until the ENC bit is toggled in
repeat-single-channel, or repeated-sequence modes. The function of the ENC
bit is unchanged when using the MSC bit.

Stopping Conversions

Stopping ADC12 activity depends on the mode of operation. The
recommended ways to stop an active conversion or conversion sequence are:

� Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the busy bit until reset before clearing ENC.

� Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

� Resetting ENC during a sequence or repeat-sequence mode stops the
converter at the end of the sequence.

� Any conversion mode may be stopped immediately by setting the
CONSEQx = 0 and resetting ENC bit. Conversion data are unreliable.

Note: No EOS Bit Set For Sequence

If no EOS bit is set and a sequence mode is selected, resetting the ENC bit
does not stop the sequence. To stop the sequence, first select a
single-channel mode and then reset ENC.
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17.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 17−10.
When using the temperature sensor, the sample period must be greater than
30 µs. The temperature sensor offset error can be large, and may need to be
calibrated for most applications. See device-specific datasheet for
parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as a voltage source for the temperature sensor. However, it does not
enable the VREF+ output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 17−10. Typical Temperature Sensor Transfer Function
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17.2.9 ADC12 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed to eliminate ground loops, unwanted
parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 17−11 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. A noise-free design using separate analog and digital ground planes
with a single-point connection is recommend to achieve high accuracy.

Figure 17−11.ADC12 Grounding and Noise Considerations
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17.2.10 ADC12 Interrupts

The ADC12 has 18 interrupt sources:

� ADC12IFG0-ADC12IFG15

� ADC12OV, ADC12MEMx overflow

� ADC12TOV, ADC12 conversion time overflow

The ADC12IFGx bits are set when their corresponding ADC12MEMx memory
register is loaded with a conversion result. An interrupt request is generated
if the corresponding ADC12IEx bit and the GIE bit are set. The ADC12OV
condition occurs when a conversion result is written to any ADC12MEMx
before its previous conversion result was read. The ADC12TOV condition is
generated when another sample-and-conversion is requested before the
current conversion is completed.

ADC12IV, Interrupt Vector Generator

All ADC12 interrupt sources are prioritized and combined to source a single
interrupt vector. The interrupt vector register ADC12IV is used to determine
which enabled ADC12 interrupt source requested an interrupt.

The highest priority enabled ADC12 interrupt generates a number in the
ADC12IV register (see register description). This number can be evaluated or
added to the program counter to automatically enter the appropriate software
routine. Disabled ADC12 interrupts do not affect the ADC12IV value.

Any access, read or write, of the ADC12IV register automatically resets the
ADC12OV condition or the ADC12TOV condition if either was the highest
pending interrupt. Neither interrupt condition has an accessible interrupt flag.
The ADC12IFGx flags are not reset by an ADC12IV access. ADC12IFGx bits
are reset automatically by accessing their associated ADC12MEMx register
or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt
is generated. For example, if the ADC12OV and ADC12IFG3 interrupts are
pending when the interrupt service routine accesses the ADC12IV register, the
ADC12OV interrupt condition is reset automatically. After the RETI instruction
of the interrupt service routine is executed, the ADC12IFG3 generates another
interrupt.
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ADC12 Interrupt Handling Software Example

The following software example shows the recommended use of ADC12IV
and the handling overhead. The ADC12IV value is added to the PC to
automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each
instruction. The software overhead for different interrupt sources includes
interrupt latency and return-from-interrupt cycles, but not the task handling
itself. The latencies are:

� ADC12IFG0 - ADC12IFG14, ADC12TOV and ADC12OV 16 cycles

� ADC12IFG15 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if
a higher prioritized interrupt occurred during the processing of ADC12IFG15.
This saves nine cycles if another ADC12 interrupt is pending.

; Interrupt handler for ADC12.

INT_ADC12 ; Enter Interrupt Service Routine 6

ADD &ADC12IV,PC; Add offset to PC 3

RETI ; Vector 0: No interrupt 5

JMP ADOV ; Vector 2: ADC overflow 2

JMP ADTOV ; Vector 4: ADC timing overflow 2

JMP ADM0 ; Vector 6: ADC12IFG0 2

... ; Vectors 8-32 2

JMP ADM14 ; Vector 34: ADC12IFG14 2

;

; Handler for ADC12IFG15 starts here. No JMP required.

;

ADM15 MOV &ADC12MEM15,xxx; Move result, flag is reset

... ; Other instruction needed?

JMP INT_ADC12 ; Check other int pending

;

; ADC12IFG14-ADC12IFG1 handlers go here

;

ADM0 MOV &ADC12MEM0,xxx ; Move result, flag is reset

... ; Other instruction needed?

RETI ; Return 5

;

ADTOV ... ; Handle Conv. time overflow

RETI ; Return 5

;

ADOV ... ; Handle ADCMEMx overflow

RETI ; Return 5



ADC12 Registers

17-20 ADC12

17.3 ADC12 Registers

The ADC12 registers are listed in Table 17−2:

Table 17−2.ADC12 Registers

Register Short Form Register Type Address Initial State

ADC12 control register 0 ADC12CTL0 Read/write 01A0h Reset with POR

ADC12 control register 1 ADC12CTL1 Read/write 01A2h Reset with POR

ADC12 interrupt flag register ADC12IFG Read/write 01A4h Reset with POR

ADC12 interrupt enable register ADC12IE Read/write 01A6h Reset with POR

ADC12 interrupt vector word ADC12IV Read 01A8h Reset with POR

ADC12 memory 0 ADC12MEM0 Read/write 0140h Unchanged

ADC12 memory 1 ADC12MEM1 Read/write 0142h Unchanged

ADC12 memory 2 ADC12MEM2 Read/write 0144h Unchanged

ADC12 memory 3 ADC12MEM3 Read/write 0146h Unchanged

ADC12 memory 4 ADC12MEM4 Read/write 0148h Unchanged

ADC12 memory 5 ADC12MEM5 Read/write 014Ah Unchanged

ADC12 memory 6 ADC12MEM6 Read/write 014Ch Unchanged

ADC12 memory 7 ADC12MEM7 Read/write 014Eh Unchanged

ADC12 memory 8 ADC12MEM8 Read/write 0150h Unchanged

ADC12 memory 9 ADC12MEM9 Read/write 0152h Unchanged

ADC12 memory 10 ADC12MEM10 Read/write 0154h Unchanged

ADC12 memory 11 ADC12MEM11 Read/write 0156h Unchanged

ADC12 memory 12 ADC12MEM12 Read/write 0158h Unchanged

ADC12 memory 13 ADC12MEM13 Read/write 015Ah Unchanged

ADC12 memory 14 ADC12MEM14 Read/write 015Ch Unchanged

ADC12 memory 15 ADC12MEM15 Read/write 015Eh Unchanged

ADC12 memory control 0 ADC12MCTL0 Read/write 080h Reset with POR

ADC12 memory control 1 ADC12MCTL1 Read/write 081h Reset with POR

ADC12 memory control 2 ADC12MCTL2 Read/write 082h Reset with POR

ADC12 memory control 3 ADC12MCTL3 Read/write 083h Reset with POR

ADC12 memory control 4 ADC12MCTL4 Read/write 084h Reset with POR

ADC12 memory control 5 ADC12MCTL5 Read/write 085h Reset with POR

ADC12 memory control 6 ADC12MCTL6 Read/write 086h Reset with POR

ADC12 memory control 7 ADC12MCTL7 Read/write 087h Reset with POR

ADC12 memory control 8 ADC12MCTL8 Read/write 088h Reset with POR

ADC12 memory control 9 ADC12MCTL9 Read/write 089h Reset with POR

ADC12 memory control 10 ADC12MCTL10 Read/write 08Ah Reset with POR

ADC12 memory control 11 ADC12MCTL11 Read/write 08Bh Reset with POR

ADC12 memory control 12 ADC12MCTL12 Read/write 08Ch Reset with POR

ADC12 memory control 13 ADC12MCTL13 Read/write 08Dh Reset with POR

ADC12 memory control 14 ADC12MCTL14 Read/write 08Eh Reset with POR

ADC12 memory control 15 ADC12MCTL15 Read/write 08Fh Reset with POR
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ADC12CTL0, ADC12 Control Register 0

15 14 13 12 11 10 9 8

SHT1x SHT0x

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

MSC REF2_5V REFON ADC12ON ADC12OVIE ADC12
TOVIE ENC ADC12SC

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Modifiable only when ENC = 0

SHT1x Bits
15-12

Sample-and-hold time. These bits define the number of ADC12CLK cycles in
the sampling period for registers ADC12MEM8 to ADC12MEM15.

SHT0x Bits
11-8

Sample-and-hold time. These bits define the number of ADC12CLK cycles in
the sampling period for registers ADC12MEM0 to ADC12MEM7.

SHTx Bits ADC12CLK cycles

0000 4

0001 8

0010 16

0011 32

0100 64

0101 96

0110 128

0111 192

1000 256

1001 384

1010 512

1011 768

1100 1024

1101 1024

1110 1024

1111 1024
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MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling timer requires a rising edge of the SHI signal to trigger

each sample-and-conversion.
1 The first rising edge of the SHI signal triggers the sampling timer, but

further sample-and-conversions are performed automatically as soon
as the prior conversion is completed.

REF2_5V Bit 6 Reference generator voltage. REFON must also be set.
0 1.5 V
1  2.5 V

REFON Bit 5 Reference generator on
0 Reference off
1 Reference on

ADC12ON Bit 4 ADC12 on
0 ADC12 off
1 ADC12 on

ADC12OVIE Bit 3 ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to
enable the interrupt.
0 Overflow interrupt disabled
1 Overflow interrupt enabled

ADC12
TOVIE

Bit 2 ADC12 conversion-time-overflow interrupt enable. The GIE bit must also be
set to enable the interrupt.
0 Conversion time overflow interrupt disabled
1 Conversion time overflow interrupt enabled

ENC Bit 1 Enable conversion
0 ADC12 disabled
1 ADC12 enabled

ADC12SC Bit 0 Start conversion. Software-controlled sample-and-conversion start.
ADC12SC and ENC may be set together with one instruction. ADC12SC is
reset automatically.
0 No sample-and-conversion-start
1 Start sample-and-conversion
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ADC12CTL1, ADC12 Control Register 1

15 14 13 12 11 10 9 8

CSTARTADDx SHSx SHP ISSH

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

ADC12DIVx ADC12SSELx CONSEQx ADC12
BUSY

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−(0)

Modifiable only when ENC = 0

CSTART
ADDx

Bits
15-12

Conversion start address. These bits select which ADC12
conversion-memory register is used for a single conversion or for the first
conversion in a sequence. The value of CSTARTADDx is 0 to 0Fh,
corresponding to ADC12MEM0 to ADC12MEM15.

SHSx Bits
11-10

Sample-and-hold source select
00 ADC12SC bit
01 Timer_A.OUT1
10 Timer_B.OUT0
11 Timer_B.OUT1

SHP Bit 9 Sample-and-hold pulse-mode select. This bit selects the source of the
sampling signal (SAMPCON) to be either the output of the sampling timer or
the sample-input signal directly.
0 SAMPCON signal is sourced from the sample-input signal.
1 SAMPCON signal is sourced from the sampling timer.

ISSH Bit 8 Invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.

ADC12DIVx Bits
7-5

ADC12 clock divider
000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8
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ADC12
SSELx

Bits
4-3

ADC12 clock source select
00 ADC12OSC
01 ACLK
10 MCLK
11 SMCLK

CONSEQx Bits
2-1

Conversion sequence mode select
00 Single-channel, single-conversion
01 Sequence-of-channels
10 Repeat-single-channel
11 Repeat-sequence-of-channels

ADC12
BUSY

Bit 0 ADC12 busy. This bit indicates an active sample or conversion operation.
0 No operation is active.
1 A sequence, sample, or conversion is active.

ADC12MEMx, ADC12 Conversion Memory Registers

15 14 13 12 11 10 9 8

0 0 0 0 Conversion Results

r0 r0 r0 r0 rw rw rw rw

7 6 5 4 3 2 1 0

Conversion Results

rw rw rw rw rw rw rw rw

Conversion
Results

Bits
15-0

The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12
are always 0. Writing to the conversion memory registers will corrupt the
results.
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ADC12MCTLx, ADC12 Conversion Memory Control Registers

7 6 5 4 3 2 1 0

EOS SREFx INCHx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Modifiable only when ENC = 0

EOS Bit 7 End of sequence. Indicates the last conversion in a sequence.
0 Not end of sequence
1 End of sequence

SREFx Bits
6-4

Select reference
000 VR+ = AVCC and VR− = AVSS
001 VR+ = VREF+ and VR− = AVSS
010 VR+ = VeREF+ and VR− = AVSS
011 VR+ = VeREF+ and VR− = AVSS
100 VR+ = AVCC and VR− = VREF−/ VeREF−
101 VR+ = VREF+ and VR− = VREF−/ VeREF−
110 VR+ = VeREF+ and VR− = VREF−/ VeREF−
111 VR+ = VeREF+ and VR− = VREF−/ VeREF−

INCHx Bits
3-0

Input channel select
0000 A0
0001 A1
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VeREF+
1001 VREF−/VeREF−
1010 Temperature sensor
1011 (AVCC – AVSS) / 2
1100 (AVCC – AVSS) / 2
1101 (AVCC – AVSS) / 2
1110 (AVCC – AVSS) / 2
1111 (AVCC – AVSS) / 2
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ADC12IE, ADC12 Interrupt Enable Register

15 14 13 12 11 10 9 8

ADC12IE15 ADC12IE14 ADC12IE13 ADC12IE12 ADC12IE11 ADC12IE10 ADC12IE9 ADC12IE8

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

ADC12IE7 ADC12IE6 ADC12IE5 ADC12IE4 ADC12IE3 ADC12IE2 ADC12IE1 ADC12IE0

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

ADC12IEx Bits
15-0

Interrupt enable. These bits enable or disable the interrupt request for the
ADC12IFGx bits.
0 Interrupt disabled
1 Interrupt enabled

ADC12IFG, ADC12 Interrupt Flag Register

15 14 13 12 11 10 9 8

ADC12
IFG15

ADC12
IFG14

ADC12
IFG13

ADC12
IFG12

ADC12
IFG11

ADC12
IFG10

ADC12
IFG9

ADC12
IFG8

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

ADC12
IFG7

ADC12
IFG6

ADC12
IFG5

ADC12
IFG4

ADC12
IFG3

ADC12
IFG2

ADC12
IFG1

ADC12
IFG0

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

ADC12IFGx Bits
15-0

ADC12MEMx Interrupt flag. These bits are set when corresponding
ADC12MEMx is loaded with a conversion result. The ADC12IFGx bits are
reset if the corresponding ADC12MEMx is accessed, or may be reset with
software.
0 No interrupt pending
1 Interrupt pending
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ADC12IV, ADC12 Interrupt Vector Register

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

r0 r0 r0 r0 r0 r0 r0 r0

7 6 5 4 3 2 1 0

0 0 ADC12IVx 0

r0 r0 r−(0) r−(0) r−(0) r−(0) r−(0) r0

ADC12IVx Bits
15-0

ADC12 interrupt vector value

ADC12IV 
Contents Interrupt Source Interrupt Flag

Interrupt
Priority

000h No interrupt pending −

002h ADC12MEMx overflow − Highest

004h Conversion time overflow −

006h ADC12MEM0 interrupt flag ADC12IFG0

008h ADC12MEM1 interrupt flag ADC12IFG1

00Ah ADC12MEM2 interrupt flag ADC12IFG2

00Ch ADC12MEM3 interrupt flag ADC12IFG3

00Eh ADC12MEM4 interrupt flag ADC12IFG4

010h ADC12MEM5 interrupt flag ADC12IFG5

012h ADC12MEM6 interrupt flag ADC12IFG6

014h ADC12MEM7 interrupt flag ADC12IFG7

016h ADC12MEM8 interrupt flag ADC12IFG8

018h ADC12MEM9 interrupt flag ADC12IFG9

01Ah ADC12MEM10 interrupt flag ADC12IFG10

01Ch ADC12MEM11 interrupt flag ADC12IFG11

01Eh ADC12MEM12 interrupt flag ADC12IFG12

020h ADC12MEM13 interrupt flag ADC12IFG13

022h ADC12MEM14 interrupt flag ADC12IFG14

024h ADC12MEM15 interrupt flag ADC12IFG15 Lowest
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The ADC10 module is a high-performance 10-bit analog-to-digital converter.
This chapter describes the ADC10. The ADC10 is implemented in the
MSP430x11x2, MSP430x12x2 devices.
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18.1 ADC10 Introduction

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The
module implements a 10-bit SAR core, sample select control, reference
generator, and data transfer controller (DTC).

The DTC allows ADC10 samples to be converted and stored anywhere in
memory without CPU intervention. The module can be configured with user
software to support a variety of applications.

ADC10 features include:

� Greater than 200 ksps maximum conversion rate

� Monotonic10-bit converter with no missing codes

� Sample-and-hold with programmable sample periods

� Conversion initiation by software or Timer_A

� Software selectable on-chip reference voltage generation (1.5 V or 2.5 V)

� Software selectable internal or external reference

� Eight external input channels

� Conversion channels for internal temperature sensor, VCC, and external
references

� Selectable conversion clock source

� Single-channel, repeated single-channel, sequence, and repeated
sequence conversion modes

� ADC core and reference voltage can be powered down separately

� Data transfer controller for automatic storage of conversion results

The block diagram of ADC10 is shown in Figure 18−1.
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Figure 18−1. ADC10 Block Diagram
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18.2 ADC10 Operation

The ADC10 module is configured with user software. The setup and operation
of the ADC10 is discussed in the following sections.

18.2.1 10-Bit ADC Core

The ADC core converts an analog input to its 10-bit digital representation and
stores the result in the ADC10MEM register. The core uses two
programmable/selectable voltage levels (VR+ and VR−) to define the upper and
lower limits of the conversion. The digital output (NADC) is full scale (03FFh)
when the input signal is equal to or higher than VR+, and zero when the input
signal is equal to or lower than VR−. The input channel and the reference
voltage levels (VR+ and VR−) are defined in the conversion-control memory.
Conversion results may be in straight binary format or 2s-complement format.
The conversion formula for the ADC result when using straight binary format
is:

NADC � 1023 �
Vin – VR–
VR�

– VR–

The ADC10 core is configured by two control registers, ADC10CTL0 and
ADC10CTL1. The core is enabled with the ADC10ON bit. With few exceptions
the ADC10 control bits can only be modified when ENC = 0. ENC must be set
to 1 before any conversion can take place.

Conversion Clock Selection

The ADC10CLK is used both as the conversion clock and to generate the
sampling period. The ADC10 source clock is selected using the ADC10SSELx
bits and can be divided from 1-8 using the ADC10DIVx bits. Possible
ADC10CLK sources are SMCLK, MCLK, ACLK and an internal oscillator
ADC10OSC .

The ADC10OSC, generated internally, is in the 5-MHz range, but varies with
individual devices, supply voltage, and temperature. See the device-specific
datasheet for the ADC10OSC specification.

The user must ensure that the clock chosen for ADC10CLK remains active
until the end of a conversion. If the clock is removed during a conversion, the
operation will not complete, and any result will be invalid.
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18.2.2 ADC10 Inputs and Multiplexer

The eight external and four internal analog signals are selected as the channel
for conversion by the analog input multiplexer. The input multiplexer is a
break-before-make type to reduce input-to-input noise injection resulting from
channel switching as shown in Figure 18−2. The input multiplexer is also a
T-switch to minimize the coupling between channels. Channels that are not
selected are isolated from the A/D and the intermediate node is connected to
analog ground (VSS) so that the stray capacitance is grounded to help
eliminate crosstalk.

The ADC10 uses the charge redistribution method. When the inputs are
internally switched, the switching action may cause transients on the input
signal. These transients decay and settle before causing errant conversion.

Figure 18−2. Analog Multiplexer

R ~ 100Ohm

ESD Protection

INCHx

Input
Ax

Analog Port Selection

The ADC10 external inputs A0 to A4 and VeREF+ and VREF− share terminals
with I/O port P2, which are digital CMOS gates. Optional inputs A5 to A7 are
shared on port P3 on selected devices (see device-specific datasheet). When
analog signals are applied to digital CMOS gates, parasitic current can flow
from VCC to GND. This parasitic current occurs if the input voltage is near the
transition level of the gate. Disabling the port pin buffer eliminates the parasitic
current flow and therefore reduces overall current consumption. The
ADC10AEx bits provide the ability to disable the port pin input and output
buffers.

; P2.3 configured for analog input

BIS.B #08h,&ADC10AE ; P2.3 ADC10 function and enable
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18.2.3 Voltage Reference Generator

The ADC10 module contains a built-in voltage reference with two selectable
voltage levels. Setting REFON = 1 enables the internal reference. When
REF2_5V = 1, the internal reference is 2.5 V. When REF2_5V = 0, the
reference is 1.5 V. The internal reference voltage may be used internally and,
when REFOUT = 0, externally on pin VREF+.

External references may be supplied for VR+ and VR− through pins A4 and A3
respectively. When external references are used, or when VCC is used as the
reference, the internal reference may be turned off to save power.

External storage capacitance is not required for the ADC10 reference source
as on the ADC12.

Internal Reference Low-Power Features

The ADC10 internal reference generator is designed for low power
applications. The reference generator includes a band-gap voltage source
and a separate buffer. The current consumption of each is specified separately
in the device-specific datasheet. When REFON = 1, both are enabled and
when REFON = 0 both are disabled. The total settling time when REFON
becomes set is � 30 µs.

When REFON = 1, but no conversion is active, the buffer is automatically
disabled and automatically re-enabled when needed. When the buffer is
disabled, it consumes no current. In this case, the band-gap voltage source
remains enabled.

When REFOUT = 1, the REFBURST bit controls the operation of the internal
reference buffer.  When REFBURST = 0, the buffer will be on continuously,
allowing the reference voltage to be present outside the device continuously.
When REFBURST = 1, the buffer is automatically disabled when the ADC10
is not actively converting, and automatically re-enabled when needed.

The internal reference buffer also has selectable speed vs. power settings.
When the maximum conversion rate is below 50 ksps, setting ADC10SR = 1
reduces the current consumption of the buffer approximately 50%.

18.2.4 Auto Power-Down

The ADC10 is designed for low power applications. When the ADC10 is not
actively converting, the core is automatically disabled and automatically
re-enabled when needed The ADC10OSC is also automatically enabled when
needed and disabled when not needed. When the core or oscillator are
disabled, they consume no current.
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18.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of sample input
signal SHI. The source for SHI is selected with the SHSx bits and includes the
following:

� The ADC10SC bit
� The Timer_A Output Unit 1
� The Timer_A Output Unit 0
� The Timer_A Output Unit 2

The polarity of the SHI signal source can be inverted with the ISSH bit. The
SHTx bits select the sample period tsample to be 4, 8, 16, or 64 ADC10CLK
cycles. The sampling timer sets SAMPCON high for the selected sample
period after synchronization with ADC10CLK. Total sampling time is tsample
plus tsync.The high-to-low SAMPCON transition starts the analog-to-digital
conversion, which requires 13 ADC10CLK cycles as shown in Figure 18−3.

Figure 18−3. Sample Timing

Start
Sampling

Stop
Sampling

Conversion
Complete

SAMPCON

SHI

tsample tconvert

tsync

13 x ADC10CLKs

Start
Conversion

ADC10CLK
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Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON =
1, the selected Ax input can be modeled as an RC low-pass filter during the
sampling time tsample, as shown below in Figure 18−4. An internal MUX-on
input resistance RI (max. 2 kΩ) in series with capacitor CI (max. 20 pF) is seen
by the source. The capacitor CI voltage VC must be charged to within � LSB
of the source voltage VS for an accurate 10-bit conversion.

Figure 18−4. Analog Input Equivalent Circuit

RS RI
VS VC

MSP430

CI

VI

VI = Input voltage at pin Ax
VS = External source voltage
RS= External source resistance 
RI = Internal MUX-on input resistance
CI = Input capacitance
VC= Capacitance-charging voltage

The resistance of the source RS and RI affect tsample.The following equations
can be used to calculate the minimum sampling time tsample for a 10-bit
conversion.

When ADC10SR = 0:

tsample � (RS � RI) � ln(211) � CI � 800ns

When ADC10SR = 1:

tsample � (RS � RI) � ln(211) � CI � 2.5�s

Substituting the values for RI and CI given above, the equation becomes:

tsample � (RS � 2k) � 7.625 � 20pF � 800ns (ADC10SR = 0)

tsample � (RS � 2k) � 7.625 � 20pF � 2.5�s (ADC10SR = 1)

For example, if RS is 10 kΩ, tsample must be greater than 2.63 µs when
ADC10SR = 0, or 4.33 µs when ADC10SR = 1.
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18.2.6 Conversion Modes

The ADC10 has four operating modes selected by the CONSEQx bits as
discussed in Table 18−1.

Table 18−1.Conversion Mode Summary

CONSEQx Mode Operation

00 Single channel
single-conversion

A single channel is converted once.

01 Sequence-of-
channels

A sequence of channels is converted once.

10 Repeat single
channel

A single channel is converted repeatedly.

11 Repeat sequence-
of-channels

A sequence of channels is converted
repeatedly.
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Single-Channel Single-Conversion Mode

A single channel selected by INCHx is sampled and converted once. The ADC
result is written to ADC10MEM. Figure 18−5 shows the flow of the
single-channel, single-conversion mode. When ADC10SC triggers a
conversion, successive conversions can be triggered by the ADC10SC bit.
When any other trigger source is used, ENC must be toggled between each
conversion.

Figure 18−5. Single-Channel Single-Conversion Mode
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Off

x = INCHx
Wait for Enable

ENC  =

Wait for Trigger

Sample, Input
Channel

ENC  =

ENC  =
SHS = 0

and
ENC = 1 or  

and
ADC10SC =

SAMPCON =

Convert

ENC = 0

ENC = 0†

12 x ADC10CLK

Conversion
Completed,

Result to
ADC10MEM,

ADC10IFG is Set

1 x ADC10CLK

† Conversion result is unpredictable

ENC = 0†

ADC10ON = 1

CONSEQx = 00

(4/8/16/64) x ADC10CLK

x = input channel Ax
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Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The sequence
begins with the channel selected by INCHx and decrements to channel A0.
Each ADC result is written to ADC10MEM. The sequence stops after
conversion of channel A0. Figure 18−6 shows the sequence-of-channels
mode. When ADC10SC triggers a sequence, successive sequences can be
triggered by the ADC10SC bit . When any other trigger source is used, ENC
must be toggled between each sequence.

Figure 18−6. Sequence-of-Channels Mode
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Wait for Enable
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Wait for Trigger
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ENC  =

ENC  =
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SAMPCON =

Convert

12  x ADC10CLK

Conversion
Completed,

Result to ADC10MEM,
ADC10IFG is Set

1 x ADC10CLK

ADC10ON = 1
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MSC = 1
and
x ≠ 0

x = 0

If x > 0 then x = x −1

MSC = 0
and
x ≠ 0

(4/8/16/64) x ADC10CLK

If x > 0 then x = x −1

x = input channel Ax
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Repeat-Single-Channel Mode

A single channel selected by INCHx is sampled and converted continuously.
Each ADC result is written to ADC10MEM. Figure 18−7 shows the
repeat-single-channel mode.

Figure 18−7. Repeat-Single-Channel Mode

ADC10
Off

x = INCHx
Wait for Enable

ENC  =

Wait for Trigger

ENC  =

ENC  =
SHS = 0

and
ENC = 1 or  

and
ADC10SC =

SAMPCON =
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Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The sequence
begins with the channel selected by INCHx and decrements to channel A0.
Each ADC result is written to ADC10MEM. The sequence ends after
conversion of channel A0, and the next trigger signal re-starts the sequence.
Figure 18−8 shows the repeat-sequence-of-channels mode.

Figure 18−8. Repeat-Sequence-of-Channels Mode
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Using the MSC Bit

To configure the converter to perform successive conversions automatically
and as quickly as possible, a multiple sample and convert function is available.
When MSC = 1 and CONSEQx > 0 the first rising edge of the SHI signal
triggers the first conversion. Successive conversions are triggered
automatically as soon as the prior conversion is completed. Additional rising
edges on SHI are ignored until the sequence is completed in the
single-sequence mode or until the ENC bit is toggled in repeat-single-channel,
or repeated-sequence modes. The function of the ENC bit is unchanged when
using the MSC bit.

Stopping Conversions

Stopping ADC10 activity depends on the mode of operation. The
recommended ways to stop an active conversion or conversion sequence are:

� Resetting ENC in single-channel single-conversion mode stops a
conversion immediately and the results are unpredictable. For correct
results, poll the ADC10BUSY bit until reset before clearing ENC.

� Resetting ENC during repeat-single-channel operation stops the
converter at the end of the current conversion.

� Resetting ENC during a sequence or repeat sequence mode stops the
converter at the end of the  sequence.

� Any conversion mode may be stopped immediately by setting the
CONSEQx=0 and resetting the ENC bit. Conversion data is unreliable.
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18.2.7 ADC10 Data Transfer Controller

The ADC10 includes a data transfer controller (DTC) to automatically transfer
conversion results from ADC10MEM to other on-chip memory locations. The
DTC is enabled by setting the ADC10DTC1 register to a nonzero value.

When the DTC is enabled, each time the ADC10 completes a conversion and
loads the result to ADC10MEM, a data transfer is triggered. No software
intervention is required to manage the ADC10 until the predefined amount of
conversion data has been transferred. Each DTC transfer requires one CPU
MCLK. To avoid any bus contention during the DTC transfer, the CPU is halted,
if active, for the one MCLK required for the transfer.

A DTC transfer must not be initiated while the ADC10 is busy. Software must
ensure that no active conversion or sequence is in progress when the DTC is
configured:

; ADC10 activity test

BIC.W #ENC,&ADC10CTL0 ;

busy_test BIT.W #BUSY,&ADC10CTL1;

JNZ busy_test ;

MOV.W #xxx,&ADC10SA ; Safe

MOV.B #xx,&ADC10DTC1 ;

; continue setup
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One-Block Transfer Mode

The one-block mode is selected if the ADC10TB is reset. The value n in
ADC10DTC1 defines the total number of transfers for a block. The block start
address is defined anywhere in the MSP430 address range using the 16-bit
register ADC10SA. The block ends at ADC10SA+2n–2. The one-block
transfer mode is shown in Figure 18−9.

Figure 18−9. One-Block Transfer

ADC10SA

ADC10SA+2

ADC10SA+2n−2

ADC10SA+2n−4

1st transfer

’n’th transfer

2nd transfer

TB=0

DTC

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer, the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. No additional DTC transfers
will occur until a write to ADC10SA. When using the DTC in the one-block
mode, the ADC10IFG flag is set only after a complete block has been
transferred. Figure 18−10 shows a state diagram of the one-block mode.
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Figure 18−10. State Diagram for Data Transfer Control in One-Block Transfer Mode
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Two-Block Transfer Mode

The two-block mode is selected if the ADC10TB bit is set. The value n in
ADC10DTC1 defines the number of transfers for one block. The address
range of the first block is defined anywhere in the MSP430 address range with
the 16-bit register ADC10SA. The first block ends at ADC10SA+2n–2. The
address range for the second block is defined as SA+2n to SA+4n–2. The
two-block transfer mode is shown in Figure 18−11.

Figure 18−11.Two-Block Transfer
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1st transfer
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2 x ’n’th transfer

TB=1

DTC

The internal address pointer is initially equal to ADC10SA and the internal
transfer counter is initially equal to ‘n’. The internal pointer and counter are not
visible to software. The DTC transfers the word-value of ADC10MEM to the
address pointer ADC10SA. After each DTC transfer the internal address
pointer is incremented by two and the internal transfer counter is decremented
by one.

The DTC transfers continue, with each loading of ADC10MEM, until the
internal transfer counter becomes equal to zero. At this point, block one is full
and both the ADC10IFG flag the ADC10B1 bit are set. The user can test the
ADC10B1 bit to determine that block one is full.

The DTC continues with block two. The internal transfer counter is
automatically reloaded with ’n’. At the next load of the ADC10MEM, the DTC
begins transferring conversion results to block two. After n transfers have
completed, block two is full. The ADC10IFG flag is set and the ADC10B1 bit
is cleared. User software can test the cleared ADC10B1 bit to determine that
block two is full. Figure 18−12 shows a state diagram of the two-block mode.
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Figure 18−12. State Diagram for Data Transfer Control in Two-Block Transfer Mode
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Continuous Transfer

A continuous transfer is selected if ADC10CT bit is set. The DTC will not stop
after block one in (one-block mode) or block two (two-block mode) has been
transferred. The internal address pointer and transfer counter are set equal to
ADC10SA and n respectively. Transfers continue starting in block one. If the
ADC10CT bit is reset, DTC transfers cease after the current completion of
transfers into block one (in the one-block mode) or block two (in the two-block
mode) have been transfer.

DTC Transfer Cycle Time

For each ADC10MEM transfer, the DTC requires one or two MCLK clock
cycles to synchronize, one for the actual transfer (while the CPU is halted), and
one cycle of wait time. Because the DTC uses MCLK, the DTC cycle time is
dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DTC uses the MCLK
source for each transfer, without re-enabling the CPU. If the MCLK source is
off, the DTC temporarily restarts MCLK, sourced with DCOCLK, only during
a transfer. The CPU remains off and after the DTC transfer, MCLK is again
turned off. The maximum DTC cycle time for all operating modes is show in
Table 18−2.

Table 18−2.Maximum DTC Cycle Time

CPU Operating Mode Clock Source Maximum DTC Cycle Time

Active mode MCLK=DCOCLK 3 MCLK cycles

Active mode MCLK=LFXT1CLK 3 MCLK cycles

Low-power mode LPM0/1 MCLK=DCOCLK 4 MCLK cycles

Low-power mode LPM3/4 MCLK=DCOCLK 4 MCLK cycles + 6 µs†

Low-power mode LPM0/1 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM3 MCLK=LFXT1CLK 4 MCLK cycles

Low-power mode LPM4 MCLK=LFXT1CLK 4 MCLK cycles + 6 µs†

† The additional 6 µs are needed to start the DCOCLK. It is the t(LPMx) parameter in the datasheet.
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18.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input
channel INCHx = 1010. Any other configuration is done as if an external
channel was selected, including reference selection, conversion-memory
selection, etc.

The typical temperature sensor transfer function is shown in Figure 18−13.
When using the temperature sensor, the sample period must be greater than
30 µs. The temperature sensor offset error can be large, and may need to be
calibrated for most applications. See the device-specific datasheet for the
parameters.

Selecting the temperature sensor automatically turns on the on-chip reference
generator as a voltage source for the temperature sensor. However, it does not
enable the VREF+ output or affect the reference selections for the conversion.
The reference choices for converting the temperature sensor are the same as
with any other channel.

Figure 18−14. Typical Temperature Sensor Transfer Function
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18.2.9 ADC10 Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and
grounding techniques should be followed to eliminate ground loops, unwanted
parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths
that are common with other analog or digital circuitry. If care is not taken, this
current can generate small, unwanted offset voltages that can add to or
subtract from the reference or input voltages of the A/D converter. The
connections shown in Figure 18−15 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due
to digital switching or switching power supplies can corrupt the conversion
result. A noise-free design is important to achieve high accuracy.

Figure 18−16. ADC10 Grounding and Noise Considerations
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18.2.10 ADC10 Interrupts

One interrupt and one interrupt vector are associated with the ADC10 as
shown in Figure 18−17. When the DTC is not used (ADC10DTC1 = 0)
ADC10IFG is set when conversion results are loaded into ADC10MEM. When
DTC is used (ADC10DTC1 > 0) ADC10IFG is set when a block transfer
completes and the internal transfer counter ’n’ = 0. If both the ADC10IE and
the GIE bits are set, then the ADC10IFG flag generates an interrupt request.
The ADC10IFG flag is automatically reset when the interrupt request is
serviced or may be reset by software.

Figure 18−17. ADC10 Interrupt System
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18.3 ADC10 Registers

The ADC10 registers are listed in Table 18−3.

Table 18−3.ADC10 Registers

Register Short Form Register Type Address Initial State

ADC10 Input enable register ADC10AE Read/write 04Ah Reset with POR

ADC10 control register 0 ADC10CTL0 Read/write 01B0h Reset with POR

ADC10 control register 1 ADC10CTL1 Read/write 01B2h Reset with POR

ADC10 memory ADC10MEM Read 01B4h Unchanged

ADC10 data transfer control register 0 ADC10DTC0 Read/write 048h Reset with POR

ADC10 data transfer control register 1 ADC10DTC1 Read/write 049h Reset with POR

ADC10 data transfer start address ADC10SA Read/write 01BCh 0200h with POR
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ADC10CTL0, ADC10 Control Register 0

15 14 13 12 11 10 9 8

SREFx ADC10SHTx ADC10SR REFOUT REFBURST

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

MSC REF2_5V REFON ADC10ON ADC10IE ADC10IFG ENC ADC10SC

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Modifiable only when ENC = 0

SREFx Bits
15-13

Select reference
000 VR+ = VCC and VR− = VSS
001 VR+ = VREF+ and VR− = VSS
010 VR+ = VeREF+ and VR− = VSS
011 VR+ = VeREF+ and VR− = VSS
100 VR+ = VCC and VR− = VREF−/ VeREF−
101 VR+ = VREF+ and VR− = VREF−/ VeREF−
110 VR+ = VeREF+ and VR− = VREF−/ VeREF−
111 VR+ = VeREF+ and VR− = VREF−/ VeREF−

ADC10
SHTx

Bits
12-11

ADC10 sample-and-hold time
00 4 x ADC10CLKs
01 8 x ADC10CLKs
10 16 x ADC10CLKs
11 64 x ADC10CLKs

ADC10SR Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for
the maximum sampling rate. Setting ADC10SR reduces the current
consumption of the reference buffer.
0 Reference buffer supports up to ~200 ksps
1 Reference buffer supports up to ~50 ksps

REFOUT Bit 9 Reference output
0 Reference output off
1 Reference output on

REFBURST Bit 8 Reference burst. REFOUT must also be set.
0 Reference buffer on continuously
1 Reference buffer on only during sample-and-conversion



ADC10 Registers

18-26 ADC10

MSC Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.
0 The sampling requires a rising edge of the SHI signal to trigger each

sample-and-conversion.
1 The first rising edge of the SHI signal triggers the sampling timer, but

further sample-and-conversions are performed automatically as soon
as the prior conversion is completed

REF2_5V Bit 6 Reference-generator voltage. REFON must also be set.
0 1.5 V
1 2.5 V

REFON Bit 5 Reference generator on
0 Reference off
1 Reference on

ADC10ON Bit 4 ADC10 on
0 ADC10 off
1 ADC10 on

ADC10IE Bit 3 ADC10 interrupt enable
0 Interrupt disabled
1 interrupt enabled

ADC10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion
result. It is automatically reset when the interrupt request is accepted, or it may
be reset by software. When using the DTC this flag is set when a block of
transfers is completed.
0 No interrupt pending
1 Interrupt pending

ENC Bit 1 Enable conversion
0 ADC10 disabled
1 ADC10 enabled

ADC10SC Bit 0 Start conversion. Software-controlled sample-and-conversion start.
ADC10SC and ENC may be set together with one instruction. ADC10SC is
reset automatically.
0 No sample-and-conversion start
1 Start sample-and-conversion
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ADC10CTL1, ADC10 Control Register 1

15 14 13 12 11 10 9 8

INCHx SHSx ADC10DF ISSH

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

ADC10DIVx ADC10SSELx CONSEQx ADC10
BUSY

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r−0

Modifiable only when ENC = 0

INCHx Bits
15-12

Input channel select. These bits select the channel for a single-conversion or
the highest channel for a sequence of conversions.
0000 A0
0001 A1
0010 A2
0011 A3
0100 A4
0101 A5
0110 A6
0111 A7
1000 VeREF+
1001 VREF−/VeREF−
1010 Temperature sensor
1011 (VCC – VSS) / 2
1100 (VCC – VSS) / 2
1101 (VCC – VSS) / 2
1110 (VCC – VSS) / 2
1111 (VCC – VSS) / 2

SHSx Bits
11-10

Sample-and-hold source select
00 ADC10SC bit
01 Timer_A.OUT1
10 Timer_A.OUT0
11 Timer_A.OUT2

ADC10DF Bit 9 ADC10 data format
0 Straight binary
1 2’s complement

ISSH Bit 8 Invert signal sample-and-hold
0 The sample-input signal is not inverted.
1 The sample-input signal is inverted.
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ADC10DIVx Bits
7-5

ADC10 clock divider
000 /1
001 /2
010 /3
011 /4
100 /5
101 /6
110 /7
111 /8

ADC10
SSELx

Bits
4-3

ADC10 clock source select
00 ADC10OSC
01 ACLK
10 MCLK
11 SMCLK

CONSEQx Bits
2-1

Conversion sequence mode select
00 Single-channel-single-conversion
01 Sequence-of-channels
10 Repeat-single-channel
11 Repeat-sequence-of-channels

ADC10
BUSY

Bit 0 ADC10 busy. This bit indicates an active sample or conversion operation
0 No operation is active.
1 A sequence, sample, or conversion is active.

ADC10AE, Analog (Input) Enable Control Register

7 6 5 4 3 2 1 0

ADC10AE7 ADC10AE6 ADC10AE5 ADC10AE4 ADC10AE3 ADC10AE2 ADC10AE1 ADC10AE0

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

ADC10AEx Bits
7-0

ADC10 analog enable
0 Analog input disabled
1 Analog input enabled
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ADC10MEM, Conversion-Memory Register, Binary Format

15 14 13 12 11 10 9 8

0 0 0 0 0 0 Conversion Results

r0 r0 r0 r0 r0 r0 r r

7 6 5 4 3 2 1 0

Conversion Results

r r r r r r r r

Conversion
Results

Bits
15-0

The 10-bit conversion results are right justified, straight-binary format. Bit 9
is the MSB. Bits 15-10 are always 0.

ADC10MEM, Conversion-Memory Register, 2’s Complement Format

15 14 13 12 11 10 9 8

Conversion Results

r r r r r r r r

7 6 5 4 3 2 1 0

Conversion Results 0 0 0 0 0 0

r r r0 r0 r0 r0 r0 r0

Conversion
Results

Bits
15-0

The 10-bit conversion results are left-justified, 2’s complement format. Bit 15
is the MSB. Bits 5-0 are always 0.
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ADC10DTC0, Data Transfer Control Register 0

7 6 5 4 3 2 1 0

Reserved ADC10TB ADC10CT ADC10B1 ADC10
FETCH

r0 r0 r0 r0 rw−(0) rw−(0) rw−(0) rw−(0)

Reserved Bits
7-4

Reserved. Always read as 0.

ADC10TB Bit 3 ADC10 two-block mode.
0 One-block transfer mode
1 Two-block transfer mode

ADC10CT Bit 2 ADC10 continuous transfer.
0 Data transfer stops when one block (one-block mode) or two blocks

(two-block mode) have completed.
1 Data is transferred continuously. DTC operation is stopped only if

ADC10CT cleared, or ADC10SA is written to.

ADC10B1 Bit 1 ADC10 block one. This bit indicates for two-block mode which block is filled
with ADC10 conversion results. ADC10B1 is valid only after ADC10IFG has
been set the first time during DTC operation. ADC10TB must also be set
0 Block 2 is filled
1 Block 1 is filled

ADC10
FETCH

Bit 0 This bit should normally be reset.
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ADC10DTC1, Data Transfer Control Register 1

7 6 5 4 3 2 1 0

DTC Transfers

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

DTC
Transfers

Bits
7-0

DTC transfers. These bits define the number of transfers in each block.
0 DTC is disabled
01h-0FFh Number of transfers per block

ADC10SA, Start Address Register for Data Transfer

15 14 13 12 11 10 9 8

ADC10SAx

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(1) rw−(0)

7 6 5 4 3 2 1 0

ADC10SAx 0

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) r0

ADC10SAx Bits
15-1

ADC10 start address. These bits are the start address for the DTC. A write
to register ADC10SA is required to initiate DTC transfers.

Unused Bit 0 Unused, Read only. Always read as 0.
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The DAC12 module is a 12-bit, voltage output digital-to-analog converter. This
chapter describes the DAC12. Two DAC12 modules are implemented in the
MSP430x15x and MSP430x16x devices.
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19.1 DAC12 Introduction

The DAC12 module is a 12-bit, voltage output DAC. The DAC12 can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA
controller. When multiple DAC12 modules are present, they may be grouped
together for synchronous update operation.

Features of the DAC12 include:

� 12-bit monotonic output

� 8- or 12-bit voltage output resolution

� Programmable settling time vs power consumption

� Internal or external reference selection

� Straight binary or 2’s compliment data format

� Self-calibration option for offset correction

� Synchronized update capability for multiple DAC12s

Note: Multiple DAC12 Modules

Some devices may integrate more than one DAC12 module. In the case
where more than one DAC12 is present on a device, the multiple DAC12
modules operate identically.

Throughout this chapter, nomenclature appears such as DAC12_xDAT or
DAC12_xCTL to describe register names. When this occurs, the x is used
to indicate which DAC12 module is being discussed. In cases where
operation is identical, the register is simply referred to as DAC12_xCTL.

The block diagram of the two DAC12 modules in the MSP430F15x/16x
devices is shown in Figure 19−1.
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Figure 19−1. DAC12 Block Diagram
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19.2 DAC12 Operation

The DAC12 module is configured with user software. The setup and operation
of the DAC12 is discussed in the following sections.

19.2.1 DAC12 Core

The DAC12 can be configured to operate in 8- or 12-bit mode using the
DAC12RES bit. The full-scale output is programmable to be 1x or 3x the
selected reference voltage via the DAC12IR bit. This feature allows the user
to control the dynamic range of the DAC12. The DAC12DF bit allows the user
to select between straight binary data and 2’s compliment data for the DAC.
When using straight binary data format, the formula for the output voltage is
given in Table 19−1.

Table 19−1.DAC12 Full-Scale Range (Vref = VeREF+ or VREF+)

Resolution DAC12RES DAC12IR Output Voltage Formula

12 bit 0 0
Vout � Vref � 3 �

DAC12_xDAT
4096

12 bit 0 1
Vout � Vref �

DAC12_xDAT
4096

8 bit 1 0
Vout � Vref � 3 �

DAC12_xDAT
256

8 bit 1 1
Vout � Vref �

DAC12_xDAT
256

In 8-bit mode the maximum useable value for DAC12_xDAT is 0FFh and in
12-bit mode the maximum useable value for DAC12_xDAT is 0FFFh. Values
greater than these may be written to the register, but all leading bits are
ignored.

DAC12 Port Selection

The DAC12 outputs are multiplexed with the port P6 pins and ADC12 analog
inputs. When DAC12AMPx > 0, the DAC12 function is automatically selected
for the pin, regardless of the state of the associated P6SELx and P6DIRx bits.
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19.2.2 DAC12 Reference

The reference for the DAC12 is configured to use either an external reference
voltage or the internal 1.5-V/2.5-V reference from the ADC12 module with the
DAC12SREFx bits. When DAC12SREFx = {0,1} the VREF+ signal is used as
the reference and when DAC12SREFx = {2,3} the VeREF+ signal is used as the
reference.

To use the ADC12 internal reference, it must be enabled and configured via
the applicable ADC12 control bits (see the ADC12 chapter). Once the ADC12
reference is configured, the reference voltage appears on the VREF+ signal.

DAC12 Reference Input and Voltage Output Buffers

The reference input and voltage output buffers of the DAC12 can be
configured for optimized settling time vs power consumption. Eight
combinations are selected using the DAC12AMPx bits. In the low/low setting,
the settling time is the slowest, and the current consumption of both buffers is
the lowest. The medium and high settings have faster settling times, but the
current consumption increases. See the device-specific data sheet for
parameters.

19.2.3 Updating the DAC12 Voltage Output

The DAC12_xDAT register can be connected directly to the DAC12 core or
double buffered. The trigger for updating the DAC12 voltage output is selected
with the DAC12LSELx bits.

When DAC12LSELx = 0 the data latch is transparent and the DAC12_xDAT
register is applied directly to the DAC12 core. the DAC12 output updates
immediately when new DAC12 data is written to the DAC12_xDAT register,
regardless of the state of the DAC12ENC bit.

When DAC12LSELx = 1, DAC12 data is latched and applied to the DAC12
core after new data is written to DAC12_xDAT. When DAC12LSELx = 2 or 3,
data is latched on the rising edge from the Timer_A CCR1 output or Timer_B
CCR2 output respectively. DAC12ENC must be set to latch the new data when
DAC12LSELx > 0.
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19.2.4 DAC12_xDAT Data Format

The DAC12 supports both straight binary and 2’s compliment data formats.
When using straight binary data format, the full-scale output value is 0FFFh
in 12-bit mode (0FFh in 8-bit mode) as shown in Figure 19−2.

Figure 19−2. Output Voltage vs DAC12 Data, 12-Bit, Straight Binary Mode

Full-Scale Output

0 0FFFh

0

Output Voltage

DAC Data

When using 2’s compliment data format, the range is shifted such that a
DAC12_xDAT value of 0800h (0080h in 8-bit mode) results in a zero output
voltage, 0000h is the mid-scale output voltage, and 07FFh (007Fh for 8-bit
mode) is the full-scale voltage output as shown in Figure 19−3.

Figure 19−3. Output Voltage vs DAC12 Data, 12-Bit, 2’s Compliment Mode
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0800h (−2048) 07FFh (+2047)0

0

Output Voltage

DAC Data

Mid-Scale Output
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19.2.5 DAC12 Output Amplifier Offset Calibration

The offset voltage of the DAC12 output amplifier can be positive or negative.
When the offset is negative, the output amplifier attempts to drive the voltage
negative, but cannot do so. The output voltage remains at zero until the DAC12
digital input produces a sufficient positive output voltage to overcome the
negative offset voltage, resulting in the transfer function shown in Figure 19−4.

Figure 19−4. Negative Offset

Output Voltage

0

DAC DataNegative Offset

When the output amplifier has a positive offset, a digital input of zero does not
result in a zero output voltage. The DAC12 output voltage reaches the
maximum output level before the DAC12 data reaches the maximum code.
This is shown in Figure 19−5.

Figure 19−5. Positive Offset

Vcc

Output Voltage

0

DAC Data Full-Scale Code

The DAC12 has the capability to calibrate the offset voltage of the output
amplifier. Setting the DAC12CALON bit initiates the offset calibration. The
calibration should complete before using the DAC12. When the calibration is
complete, the DAC12CALON bit is automatically reset. The DAC12AMPx bits
should be configured before calibration. For best calibration results, port and
CPU activity should be minimized during calibration.
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19.2.6 Grouping Multiple DAC12 Modules

Multiple DAC12s can be grouped together with the DAC12GRP bit to
synchronize the update of each DAC12 output. Hardware ensures that all
DAC12 modules in a group update simultaneously independent of any
interrupt or NMI event.

On the MSP430x15x and MSP430x16x devices, DAC12_0 and DAC12_1 are
grouped by setting the DAC12GRP bit of DAC12_0. The DAC12GRP bit of
DAC12_1 is don’t care. When DAC12_0 and DAC12_1 are grouped:

� The DAC12_1 DAC12LSELx bits select the update trigger for both DACs

� The DAC12LSELx bits for both DACs must be > 0

� The DAC12ENC bits of both DACs must be set to 1

When DAC12_0 and DAC12_1 are grouped, both DAC12_xDAT registers
must be written to before the outputs update - even if data for one or both of
the DACs is not changed. Figure 19−6 shows a latch-update timing example
for grouped DAC12_0 and DAC12_1.

When DAC12_0 DAC12GRP = 1 and both DAC12_x DAC12LSELx > 0 and
either DAC12ENC = 0, neither DAC12 will update.

Figure 19−6. DAC12 Group Update Example, Timer_A3 Trigger
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DAC12_0 Updated
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New Data
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Updated Simultaneously

Note: DAC12 Settling Time

The DMA controller is capable of transferring data to the DAC12 faster than
the DAC12 output can settle. The user must assure the DAC12 settling time
is not violated when using the DMA controller. See the device-specific data
sheet for parameters.
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19.2.7 DAC12 Interrupts

The DAC12 interrupt vector is shared with the DMA controller. Software must
check the DAC12IFG and DMAIFG flags to determine the source of the
interrupt.

The DAC12IFG bit is set when DAC12LSELx > 0 and DAC12 data is latched
from the DAC12_xDAT register into the data latch. When DAC12LSELx = 0,
the DAC12IFG flag is not set.

A set DAC12IFG bit indicates that the DAC12 is ready for new data. If both the
DAC12IE and GIE bits are set, the DAC12IFG generates an interrupt request.
The DAC12IFG flag is not reset automatically. It must be reset by software.
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19.3 DAC12 Registers

The DAC12 registers are listed in Table 19−2:

Table 19−2.DAC12 Registers

Register Short Form Register Type Address Initial State

DAC12_0 control DAC12_0CTL Read/write 01C0h Reset with POR

DAC12_0 data DAC12_0DAT Read/write 01C8h Reset with POR

DAC12_1 control DAC12_1CTL Read/write 01C2h Reset with POR

DAC12_1 data DAC12_1DAT Read/write 01CAh Reset with POR
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DAC12_xCTL, DAC12 Control Register

15 14 13 12 11 10 9 8

Reserved DAC12SREFx DAC12RES DAC12LSELx DAC12
CALON DAC12IR

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

DAC12AMPx DAC12DF DAC12IE DAC12IFG DAC12ENC DAC12
GRP

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Modifiable only when DAC12ENC = 0

Reserved Bit 15 Reserved

DAC12
SREFx

Bits
14-13

DAC12 select reference voltage
00 VREF+
01 VREF+
10 VeREF+
11 VeREF+

DAC12
RES

Bit 12 DAC12 resolution select
0 12-bit resolution
1 8-bit resolution

DAC12
LSELx

Bits
11-10

DAC12 load select. Selects the load trigger for the DAC12 latch. DAC12ENC
must be set for the DAC to update, except when DAC12LSELx = 0.
00 DAC12 latch loads when DAC12_xDAT written (DAC12ENC is ignored)
01 DAC12 latch loads when DAC12_xDAT written, or, when grouped,

when all DAC12_xDAT registers in the group have been written.
10 Rising edge of Timer_A.OUT1 (TA1)
11 Rising edge of Timer_B.OUT2 (TB2)

DAC12
CALON

Bit 9 DAC12 calibration on. This bit initiates the DAC12 offset calibration sequence
and is automatically reset when the calibration completes.
0 Calibration is not active
1 Initiate calibration/calibration in progress

DAC12IR Bit 8 DAC12 input range. This bit sets the reference input and voltage output range.
0 DAC12 full-scale output = 3x reference voltage
1 DAC12 full-scale output = 1x reference voltage
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DAC12
AMPx

Bits
7-5

DAC12 amplifier setting. These bits select settling time vs. current
consumption for the DAC12 input and output amplifiers.

DAC12AMPx Input Buffer Output Buffer

000 Off DAC12 off, output high Z

001 Off DAC12 off, output 0 V

010 Low speed/current Low speed/current

011 Low speed/current Medium speed/current

100 Low speed/current High speed/current

101 Medium speed/current Medium speed/current

110 Medium speed/current High speed/current

111 High speed/current High speed/current

DAC12DF Bit 4 DAC12 data format
0 Straight binary
1 2’s compliment

DAC12IE Bit 3 DAC12 interrupt enable
0 Disabled
1 Enabled

DAC12IFG Bit 2 DAC12 Interrupt flag
0 No interrupt pending
1 Interrupt pending

DAC12
ENC

Bit 1 DAC12 enable conversion. This bit enables the DAC12 module when
DAC12LSELx > 0. when DAC12LSELx = 0, DAC12ENC is ignored.
0 DAC12 disabled
1 DAC12 enabled

DAC12
GRP

Bit 0 DAC12 group. Groups DAC12_x with the next higher DAC12_x. Not used for
DAC12_1 on MSP430x15x and MSP430x16x devices.
0 Not grouped
1 Grouped
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DAC12_xDAT, DAC12 Data Register

15 14 13 12 11 10 9 8

0 0 0 0 DAC12 Data

r(0) r(0) r(0) r(0) rw−(0) rw−(0) rw−(0) rw−(0)

7 6 5 4 3 2 1 0

DAC12 Data

rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0) rw−(0)

Unused Bits
15-12

Unused. These bits are always 0 and do not affect the DAC12 core.

DAC12 Data Bits
11-0

DAC12 data

DAC12 Data Format DAC12 Data

12-bit binary The DAC12 data are right-justified. Bit 11 is the MSB.

12-bit 2’s complement The DAC12 data are right-justified. Bit 11 is the MSB
(sign).

8-bit binary The DAC12 data are right-justified. Bit 7 is the MSB.
Bits 11-8 are don’t care and do not effect the DAC12
core.

8-bit 2’s complement The DAC12 data are right-justified. Bit 7 is the MSB
(sign). Bits 11-8 are don’t care and do not effect the
DAC12 core.
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